
www.manaraa.com

J. LOGIC PROGRAMMING 1994:19, 20:1{679 1THE SEMANTICS OF CONSTRAINT LOGICPROGRAMSJOXAN JAFFAR, MICHAEL MAHER, KIM MARRIOTTAND PETER STUCKEY. The Constraint Logic Programming (CLP) Scheme was introduced byJa�ar and Lassez. The scheme gave a formal framework, based on con-straints, for the basic operational, logical and algebraic semantics of anextended class of logic programs. This paper presents for the �rst timethe semantic foundations of CLP in a self-contained and complete package.The main contributions are threefold. First, we extend the original con-ference paper by presenting de�nitions and basic semantic constructs from�rst principles, giving new and complete proofs for the main lemmas. Im-portantly, we clarify which theorems depend on conditions such as solutioncompactness, satisfaction completeness and independence of constraints.Second, we generalize the original results to allow for incompleteness of theconstraint solver. This is important since almost all CLP systems use anincomplete solver. Third, we give conditions on the (possibly incomplete)solver which ensure that the operational semantics is con
uent, that is, hasindependence of literal scheduling. /1. INTRODUCTIONThe Constraint Logic Programming (CLP) Scheme was introduced by Ja�ar andLassez [8]. The scheme gave a formal framework, based on constraints, for thebasic operational, logical and algebraic semantics of an extended class of logic pro-grams. This framework extended traditional logic programming in a natural wayAddress correspondence to Joxan Ja�ar, Department of Information Systems and ComputerScience, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 Email:joxan@iscs.nus.edu.sgMichael Maher, School of Computing and Information Technology, Gri�th University, Nathan,Queensland 4111, Australia. Email: m.maher@cit.gu.edu.auKim Marriott, Department of Computer Science, Monash University, Clayton Vic. 3168,Australia. Email: marriott@cs.monash.edu.auPeter Stuckey, Department of Computer Science, University of Melbourne, Parkville 3052,Australia. Email: pjs@cs.mu.oz.auTHE JOURNAL OF LOGIC PROGRAMMINGc
 Elsevier Science Inc., 1994655 Avenue of the Americas, New York, NY 10010 0743-1066/94/$7.00

www.manaraa.com

2 by generalizing the term equations of logic programming to constraints from anypre-de�ned computation domain. Di�erent classes of constraints give rise to di�er-ent programming languages with di�erent areas of application. Since then there hasbeen considerable interest in the semantics and implementation of CLP languages,in part because they have proven remarkably useful, for systems modeling and forsolving complex combinatorial optimization problems [11, 20].CLP languages have a rich semantic theory which generalizes earlier researchinto semantics for logic programs. In the context of logic programs, van Emdenand Kowalski [4] gave a simple and elegant �xpoint and model theoretic semanticsfor de�nite clause logic programs based on the least Herbrand model of a program.Apt and van Emden [1] extended this work to establish the soundness and com-pleteness of the operational semantics (SLD resolution) with respect to success andto characterize �nite failure. Clark [2] introduced the program completion as a log-ical semantics for �nite failure and proved soundness of the operational semanticswith respect to the completion. Ja�ar et al [9] proved completeness of the opera-tional semantics with respect to the completion. Together these results provide anelegant algebraic, �xpoint and logical semantics for pure logic programs. The bookof Lloyd [17] provides a detailed introduction to the semantics of logic programs.One natural generalization of logic programs is to allow di�erent uni�cationmechanisms in the operational semantics. Such a generalization was welcomed sinceit promised the integration of the functional and logical programming paradigms.Ja�ar et al [10] generalized the theory of pure logic programs to a logic programmingscheme which was parametric in the underlying equality theory, and proved thatthe main semantic results continued to hold. However, the theory of logic programswith equality was still not powerful enough to handle logic languages which providedmore than equations. In particular, Prolog II [3] provided inequations over therational trees. Ja�ar and Stuckey [13] showed that the standard semantic resultsstill held for Prolog II in the presence of inequations. The CLP Scheme generalizedthese two strands of work to provide a scheme over arbitrary constraints whichcould be equations, inequations or whatever. Somewhat surprisingly, the key resultsfor the logic programming semantics continue to hold in this much more generalsetting. Indeed, as we shall show, presenting the standard logic programming resultsin terms of CLP actually results in a more direct and elegant formalization andprovides deeper insight into why the results hold for logic programming.This paper presents for the �rst time the semantic foundations of CLP in aself-contained and complete package. The original presentation of the CLP schemewas in the form of an extended abstract [8], referring much of the technical details,including all formal proofs, to an unpublished report [7]. The conference paper ofMaher [18] provided a stronger completeness result. Subsequent papers on CLPsemantics have either been partial in the sense that they focus on certain aspectsonly, or they have been informal, being part of a tutorial or survey. Indeed, Ja�arand Maher's comprehensive survey of CLP [11] did not present the semantics ina formal way, nor include any important proofs. The main contributions of thepresent paper are:� We extend the original conference papers by presenting de�nitions and basicsemantic constructs from �rst principles, with motivating discussions andexamples, and give new and complete proofs for the main lemmas. Im-portantly, we clarify which theorems depend on conditions such as solution

www.manaraa.com

3compactness, satisfaction completeness and independence of constraints.� We generalize the original results to allow for incompleteness of the con-straint solver. This is important since almost all CLP systems use an in-complete solver.� We give conditions on the (possibly incomplete) solver which ensure thatthe operational semantics is con
uent, that is, has independence of literalscheduling.A synopsis is as follows. In the next section we introduce the notions of con-straints, solvers and constraint domains. In Section 3 the operational semantics ofCLP is introduced, together with breadth-�rst derivations. In Section 4, soundnessand completeness results for successful derivations are derived. Also, two �xpointsemantics are introduced. In Section 5 we give soundness and completeness resultsfor �nite failure. Section 6 summarizes our main results and relates them to thestandard results for logic programming.2. CONSTRAINTSWe assume that the reader is familiar with the basics of �rst-order logic. See forexample [22]. We use the notation ~s to denote a sequence of terms or variabless1; : : : ; sn. In an abuse of notation we shall often write ~s = ~t, where ~s and ~t arevectors of length n, to denote the sequence (or conjunction) of equations s1 =t1; : : : ; sn = tn.We let 9~xF , where ~x is a vector of variables, denote the logical formula 9x19x2 � � �9xnFSimilarly we let 9WF denote the logical formula 9x19x2 � � � 9xnF where variableset W = fx1; : : : ; xng, and we let �9WF denote the restriction of the logical formulaF to the variables in W . That is, �9WF is 9vars(F)nWF , where the function varstakes a syntactic object and returns the set of free variables occurring in it. We let~9F denote the existential closure of F and ~8F denote the universal closure of F .A renaming is a bijective mapping between variables. We naturally extend re-namings to mappings between logical formulas, rules, and constraints. Syntacticobjects s and s0 are said to be variants if there is a renaming � such that �(s) = s0.A signature de�nes a set of function and predicate symbols and associates anarity with each symbol. A �-structure, D, is an interpretation of the symbols inthe signature �. It consists of a set D and a mapping from the symbols in �to relations and functions over D which respects the arities of the symbols. A�rst-order �-formula is a �rst order logical formula built from variables and thefunction and predicate symbols in � in the usual way using the logical connectives^, _, : , ! and the quanti�ers 9 and 8. A �-theory is a possibly in�nite set ofclosed �-formulas. A solver for a set L of �-formulas is a function which maps eachformula to one of true, false or unknown, indicating that the formula is satis�able,unsatis�able or it cannot tell.CLP languages extend logic-based programming languages by allowing con-straints with a pre-de�ned interpretation. The key insight of the CLP schemeis that for these languages the operational semantics, declarative semantics and therelationship between them can be parameterized by a choice of constraints, solverand an algebraic and logical semantics for the constraints.

www.manaraa.com

4 More precisely, the scheme de�nes a class of languages, CLP (C), which are para-metric in the constraint domain C. The constraint domain contains the followingcomponents:� the constraint domain signature, �C;� the class of constraints, LC, which is some prede�ned subset of �rst-order�-formulas;� the domain of computation, DC, which is a �-structure that is the intendedinterpretation of the constraints;� the constraint theory, TC , which is a �-theory that describes the logicalsemantics of the constraints; and� the solver, solvC , which is a solver for LC.We assume that:� The binary predicate symbol \=" is in �C , that = is interpreted as identityin DC and that TC contains the standard equality axioms for =.� The class of constraints LC contains, among other formulas, all atoms con-structed from =, the always satis�able constraint true and the unsatis�ableconstraint false and is closed under variable renaming, existential quanti�-cation and conjunction.� The solver does not take variable names into account, that is, for all renam-ings �, solvC (c) = solvC (�(c)):� The domain of computation, solver and constraint theory agree in the sensethat DC is a model of TC and that for any constraint c 2 LC, if solvC(c) =false then TC j= : ~9c, and if solvC(c) = true then TC j= ~9c.For a particular constraint domain C, we call an element of LC a constraint andan atomic constraint is called a primitive constraint.In this paper we will make use of the following two example constraint domains.Example 2.1. The constraint domain Real which has �;�; <;>;= as the relationsymbols, function symbols +, �, � and =, and sequences of digits with an optionaldecimal point as constant symbols. The intended interpretation of Real has as itsdomain the set of real numbers, R. The primitive constraints �;�; <;>;= areinterpreted as the obvious arithmetic relations over R, and the function symbols+, �, � and =, are the obvious arithmetic functions over R. Constant symbols areinterpreted as the decimal representation of elements of R. The theory of the realclosed �elds is a theory for Real [22]. A possible implementation of a solver for Realis based on that of CLP (R) [12]. It uses the Simplex algorithm and Gauss-Jordanelimination to handle linear constraints and delays non-linear constraints until theybecome linear.Example 2.2. The constraint domain Term has = as the primitive constraint, andstrings of alphanumeric characters as function symbols or as constant symbols.CLP (Term) is, of course, the core of the programming language Prolog.

www.manaraa.com

5The intended interpretation of Term is the set of �nite trees, Tree. The interpre-tation of a constant a is a tree with a single node labeled with a. The interpretationof the n-ary function symbol f is the function fTree : Treen ! Tree which mapsthe trees T1; : : : ; Tn to a new tree with root node labeled by f and with T1; : : : ; Tnas children. The interpretation of = is the identity relation over Tree. The naturaltheory, TTerm, was introduced in logic programming by Clark [2] (see also [19]) inwhich \=" is required to be syntactic equality on trees. The uni�cation algorithmis a constraint solver for this domain.Note that if the solver returns unknown this means the solver cannot determinesatis�ability; it does not mean that the constraint theory does not imply satis�abil-ity or unsatis�ability of the constraint. Thus the solver is allowed to be incomplete.Because of the agreement requirement, a solver for constraint domain C can onlybe as powerful as the constraint domain theory TC . A solver with this property istheory complete. That is a, a solver is theory complete whenever� solvC(c) = false i� TC j= : ~9c, and� solvC(c) = true i� TC j= ~9c.If the solver only ever returns true or false it is said to be complete. If the solverfor constraint domain C is complete then we must have that the constraint theoryTC is satisfaction complete [8], that is, for every constraint c, either TC j= : ~9c orTC j= ~9c.It is important to note that a theory for a constraint domain may have modelswhich are very di�erent to the intended model. If the solver is not complete, thenconstraints which are false in the domain of computation DC may be true in thesemodels. If the solver is complete then all models must agree about whether aconstraint is satis�able or not. We call a model which is not the intended model anon-standard model.Example 2.3. A well-known non-standard model of the real closed �eld (due toAbraham Robinson, see e.g. [21]) is the model R? which contains (1) \in�nites-imals" which are not zero but smaller than every non-zero real number and (2)\in�nite elements" which are larger than every real number.Note that from the above de�nition we can easily de�ne a constraint domainC given a signature �C , language of constraints LC and a solver solvC and eithera domain of computation or a constraint theory that agrees with solvC . Given adomain of computation DC , then a suitable constraint theory TC is just the theoryof DC, that is all �rst order formulae true in DC. Alternatively given a constrainttheory TC we can take DC to be an arbitrary model of the theory.A constraint domain provides three di�erent semantics for the constraints: anoperational semantics given by the solver, an algebraic semantics given by the in-tended interpretation, and a logical semantics given by the theory. One of the nicestproperties of the CLP languages is that it is possible to also give an operational,algebraic and logical semantics to the user de�ned predicates, that is programs. Wenow do so.

www.manaraa.com

63. OPERATIONAL SEMANTICSIn this section we de�ne an abstract operational semantics for constraint logic pro-grams based on top-down derivations and investigate when the semantics is con
u-ent, that is when the results are independent from the literal selection strategy. Wealso introduce a canonical form of operational semantics, breadth-�rst derivations,which will prove a useful bridge to the algebraic semantics.3.1. Constraint logic programs and their operational semanticsAs described in the last section, a constraint logic programming language is param-eterized by the underlying constraint domain C. The constraint domain determinesthe constraints and the set of function and constant symbols from which terms inthe program may be constructed, as well as a solver solvC . The solver determineswhen (or if) to prune a branch in the derivation tree. Di�erent choices of constraintdomain and solver give rise to di�erent programming languages. For a particularconstraint domain C, we let CLP (C) be the constraint programming language basedon C.A constraint logic program (CLP), or program, is a �nite set of rules. A rule is ofthe form H :- B where H, the head, is an atom and B, the body, is a �nite, non-empty sequence of literals. We let 2 denote the empty sequence. We shall writerules of the form H :- 2 simply as H. A literal is either an atom or a primitiveconstraint. An atom has the form p(t1; :::; tn) where p is a user-de�ned predicatesymbol and the ti are terms from the constraint domain.Our examples will make use of the language CLP (Real) which is based on theconstraint domain Real and the language CLP (Term) which is based on the con-straint domain Term.The de�nition of an atom p(t1; :::; tn) in program P , defnP (p(t1; :::; tn)), is theset of rules in P such that the head of each rule has form p(s1; :::; sn). To side-steprenaming issues, we assume that each time defnP is called it returns variants withdistinct new variables.The operational semantics is given in terms of the \derivations" from goals.Derivations are sequences of reductions between \states", where a state is a tuplehG ci which contains the current literal sequence or \goal" G and the currentconstraint c. At each reduction step, a literal in the goal is selected according tosome �xed selection rule, which is often left-to-right. If the literal is a primitiveconstraint, and it is consistent with the current constraint, then it is added to it. Ifit is inconsistent then the derivation \fails". If the literal is an atom, it is reducedusing one of the rules in its de�nition.A state hL1; :::; Lm ci can be reduced as follows: Select a literal Li then:1. If Li is a primitive constraint and solv(c ^ Li) 6= false, it is reduced tohL1; :::; Li�1; Li+1; :::; Lm c ^ Lii.2. If Li is a primitive constraint and solv(c ^ Li) = false, it is reduced toh2 falsei.3. If Li is an atom, then it is reduced tohL1; :::; Li�1; s1 = t1; :::; sn = tn; B; Li+1; :::; Lm ci

www.manaraa.com

7for some (A :- B) 2 defnP (Li) where Li is of form p(s1; :::; sn) and A isof form p(t1; :::; tn).4. If Li is an atom and defnP (Li) = ;, it is reduced to h2 falsei.A derivation from a state S in a program P is a �nite or in�nite sequence of statesS0) S1) � � �) Sn) � � � where S0 is S and there is a reduction from each Si�1to Si, using rules in P . A derivation from a goal G in a program P is a derivationfrom hG truei. The length of a (�nite) derivation of the form S0) S1) � � �) Snis n. A derivation is �nished if the last goal cannot be reduced. The last state in a�nished derivation from G must have the form h2 ci. If c is false the derivationis said to be failed. Otherwise the derivation is successful. The answers of a goal Gfor program P are the constraints �9vars(G)c where there is a successful derivationfrom G to �nal state with constraint c. Note that in the operational semantics theanswer is treated syntactically.In many implementations of CLP languages the answer is simpli�ed into a logi-cally equivalent constraint, perhaps by removing existentially quanti�ed variables,before being shown to the user. For simplicity we will ignore such a simpli�cationstep although our results continue to hold modulo logical equivalence with respectto the theory.Example 3.1. Consider the following simple CLP (Real) program to compute thefactorial of a number:(R1) fac(0; 1):(R2) fac(N;N � F) :- N � 1; fac(N � 1; F):A successful derivation from the goal fac(1; X) is:hfac(1; X) truei+ R2h1 = N;X = N � F;N � 1; fac(N � 1; F) truei+hX = N � F;N � 1; fac(N � 1; F) 1 = N i+hN � 1; fac(N � 1; F) 1 = N ^X = N � F i+hfac(N � 1; F) 1 = N ^X = N � F ^N � 1i+ R1hN � 1 = 0; F = 1 1 = N ^X = N � F ^N � 1i+hF = 1 1 = N ^X = N � F ^N � 1 ^N � 1 = 0i+h2 1 = N ^X = N � F ^N � 1 ^N � 1 = 0 ^ F = 1iIn each step the selected literal is underlined, and if an atom is rewritten, therule used is written beside the arrow. Since the intermediate variables are not of

www.manaraa.com

8 interest, they are quanti�ed away to give the answer9N9F (1 = N ^X = N � F ^N � 1 ^N � 1 = 0 ^ F = 1)which is logically equivalent to X = 1.Example 3.2. Consider the factorial program again. One failed derivation from thegoal fac(2; X) is:hfac(2; X) truei+ R1h2 = 0; X = 1 truei+h2 falseiNote that because the solver can be incomplete, a successful derivation may givean answer which is unsatis�able since the solver may not be powerful enough torecognize that the constraint is unsatis�able.Example 3.3. For example using the solver of CLP (R), the following derivation ispossible:hY = X �X;Y < 0 truei+hY < 0 Y = X �Xi+h2 Y = X �X ^ Y < 0iDe�nition 3.1. An answer c to a goal G for program P is satis�able if TC j= ~9c.Otherwise c is a pseudo-answer for G.3.2. Con
uence of the operational semanticsIn the de�nition of derivation, there are three sources of non-determinism. The�rst is the choice of which rule to use when rewriting an atom. The second is thechoice of how to rename the rule. The third is the choice of the selected literal.Di�erent choices for which rule to rewrite with lead to di�erent answers, and sofor completeness an implementation must consider all choices. However, in thissubsection we give simple conditions on the solver which ensure that the choiceof the selected literal and choice of the renaming do not e�ect the outcome. Thisallows an implementation to use �xed rules for renaming and for selecting the literalwith a guarantee that it will still �nd all of the answers. This is important for thee�cient implementation of constraint logic programs systems.The results of this section generalize those given in Lloyd [17] for logic programs.The primary di�erence from the logic programming case is that not considering

www.manaraa.com

9substitutions makes the results much easier to obtain. One technical di�erence isthe need to consider incomplete solvers.In general, the strategy used to rename rules does not a�ect the derivations ofa goal or its answers in any signi�cant way. This is because the names of the localvariables do not a�ect the validity of the derivation as the solver does not takenames of variables into account.We now show that the results of evaluation are \essentially" independent fromthe choice of literal selection. We will �rst de�ne precisely what we mean by aliteral selection strategy (called a \computation rule" in Lloyd [17]).De�nition 3.2. A literal selection strategy S is a function which given a derivationreturns a literal L in the last goal in the derivation.A derivation is via a selection rule S if all choices of the selected atoms in thederivation are performed according to S. That is, if the derivation ishG1 c1i) hG2 c2i) � � �) hGn cni) � � �then for each i � 1, the literal selected from state hGi cii isS(hG1 c1i) � � �) hGi cii):Note that a literal selection strategy is free to select di�erent literals in the samegoal if it occurs more than once in the derivation.Unfortunately, answers are not independent of the literal selection strategy forall solvers. The �rst problem is that di�erent selection strategies can collect theconstraints in di�erent orders, and the solver may take the order of the primitiveconstraints into account when determining satis�ability.Example 3.4. Consider the goal p(X) and the programp(Y) :- Y = 1; Y = 2:Imagine that the solver, solv, is de�ned so that it does not consider the last primitiveconstraint occurring in its argument. That is,solv(X = Y) = unknownsolv(X = Y ^ Y = 1) = unknownsolv(X = Y ^ Y = 1 ^ Y = 2) = unknownsolv(Y = 2) = unknownsolv(Y = 2 ^ Y = 1) = unknownsolv(Y = 2 ^ Y = 1 ^X = Y) = falseUsing a left-to-right literal selection strategy with this solver, the answer 9Y (X =Y ^ Y = 1 ^ Y = 2) is obtained. However, with a right-to-left selection strategythe goal has a single failed derivation.The second problem is shown in the following example.Example 3.5. Consider the goal and the program from the preceding example.Imagine that the solver, solv, is now de�ned so that it is complete for all constraints

www.manaraa.com

10 with only two primitives and returns unknown for larger constraints. That is,solv(X = Y) = truesolv(X = Y ^ Y = 1) = truesolv(X = Y ^ Y = 1 ^ Y = 2) = unknownsolv(Y = 2) = truesolv(Y = 2 ^ Y = 1) = falsesolv(Y = 2 ^ Y = 1 ^X = Y) = unknownUsing a left-to-right literal selection strategy with this solver, the answer 9Y (X =Y ^ Y = 1 ^ Y = 2) is obtained. However, with a right-to-left selection strat-egy the goal has a single failed derivation. The problem is that the solver is not\monotonic".Fortunately, most real world solvers do not exhibit such pathological behavior.They are well-behaved in the following sense.De�nition 3.3. A constraint solver solv for constraint domain C is well-behaved iffor any constraints c1 and c2 from C:logical: solv(c1) = solv(c2) whenever j= c1 $ c2. That is, if c1 and c2 are logicallyequivalent using no information about the constraint domain, then the solveranswers the same for both.monotonic: if solv(c1) = false then solv(c2) = false whenever j= c1 �9vars(c1)c2.That is, if the solver fails c1 then, whenever c2 contains \more constraints"than c1, the solver also fails c2.The solvers in the above two examples are not well-behaved. The solver in the �rstexample is not logical, while that of the second example is not monotonic. Note thatthe above de�nitions do not use information from the constraint domain and so donot assume that equality is modeled by identity. For instance, a monotonic solverfor Real is allowed to map solv(1 = 0) to false and solv(X � Y = 1 ^X � Y = 0)to unknown. We note that any complete solver is well-behaved.We can prove that for well-behaved solvers the answers are independent of theselection strategy. The core of the proof of this result is contained in the followinglemma:Lemma 3.1. (Switching Lemma)Let S be a state and L;L0 be literals in the goal of S. Let solv be a well-behavedsolver and let S) S1) S0 be a non-failed derivation constructed using solvwith L selected �rst, followed by L0. There is a derivation S) S2) S00 alsoconstructed using solv in which L0 is selected �rst, followed by L, and S0 and S00are identical up to reordering of their constraint components.Proof. There are four ways by which S can be reduced to S0. For simplicity wewill assume that S is the state hL;L0 ci. This clari�es the argument by removingthe need to keep track of other literals in the goal which are una�ected by thereductions.1. In the �rst case both L and L0 are constraints. In this case S1 is hL0 c^Liand S0 is h2 c ^ L ^ L0i. If we choose S2 to be hL c ^ L0i and S00 to

www.manaraa.com

11be h2 c ^ L0 ^ Li then S) S2) S00 is a valid derivation as we knowthat solv(c^L^L0) 6= false and so from well-behavedness of the constraintsolver, solv(c ^ L0) 6= false and solv(c ^ L0 ^ L) 6= false.2. The second case is when L and L0 are both atoms. Assume that L isof form p(t1; : : : ; tm) and was reduced using the rule renaming of formp(s1; : : : ; sm) :- B and that L0 is of form q(t01; : : : ; t0m0) and was reducedusing the rule renaming of form q(s01; : : : ; s0m0) :- B0 . Then S1 isht1 = s1; : : : ; tm = sm; B; L0 ciand S0 isht1 = s1; : : : ; tm = sm; B; t01 = s01; : : : ; t0m0 = s0m0 ; B0 ci:In this case we choose S2 to behL; t01 = s01; : : : ; t0m0 = s0m0 ; B0 ciand S00 to be S0. Clearly S) S2) S0 is a valid derivation since the rulerenamings are still disjoint from each other.3. In the second case L is a constraint and L0 is an atom. This case is a simplecombination of the above two cases.4. In the third case L0 is a constraint and L is an atom. It is symmetric to theprevious case. 2We can now prove that for well-behaved solvers the operational semantics iscon
uent, that is independent of the literal selection strategy.Theorem 3.1. (Independence of the Literal Selection Strategy)Assume that the underlying constraint solver is well-behaved and let P be aprogram and G a goal. Suppose that there is derivation from G with answer c.Then, for any literal selection strategy S, there is a derivation of the same lengthfrom G via S with an answer which is a reordering of c.Proof. The induction hypothesis is that if there is a successful derivation D oflength N from a state S to state h2 ci then for S, there is a derivation of thesame length from S using S to h2 c0i where c0 is a reordering of c. The proof is byinduction on the length of D. In the base case when the length N is 0, S is simplyh2 ci and the result clearly holds.We now prove the induction step. Consider the derivation D of length N + 1,S) S1) � � �) SN) h2 ci:Assume that S selects literal L in the (singleton state) derivation S. As D isa successful derivation, every literal in D must be selected at some stage. ThusL must be selected at some point, say when reducing Si to Si+1. By applyingLemma 3.1 i times we can reorder D to obtain a derivation E of formS) S01) � � �) S0N) h2 c00i

www.manaraa.com

12 in which L is selected in state S and c00 is a reordering of c. From the inductionhypothesis there is a derivation E0 of length N using S 0 from S01 to h2 c0i whereS0 is a literal selection strategy which picks the same literal in E0 as is picked by Sin S) E0 and c0 is reordering of c00 and hence of c. Thus the derivation S) E0 isthe required derivation.The proof follows by induction. 2Even for solvers which are not well-behaved, it is possible to show a weakercon
uence result { namely that the answers which are satis�able are the same. Toshow this, we �rst need a lemma which relates the \power" of the constraint solverto the answers.De�nition 3.4. Let solv and solv0 be constraint solvers for the same constraintdomain. Solver solv is more powerful than solv0 if for all constraints c, solv(c) =unknown implies solv(c0) = unknown.A more powerful constraint solver limits the size of derivations and the numberof successful derivations since unsatis�able constraints are detected earlier in theconstruction of the derivation and so derivations leading to pseudo-answers mayfail. Successful derivations which have an answer which is satis�able are, of course,not pruned.Lemma 3.2. Let S be a state and solv and solv0 be constraint solvers such that solvis more powerful than solv0.(a) Each derivation from S using solv is also a derivation from S using solv0.(b) Each successful derivation from S using solv0 with a satis�able answer is alsoa derivation from S using solv.Proof. Part (a) follows by induction on the length of the derivation and thede�nition of more powerful.The proof of part (b) relies on the observation that if a successful derivation hasan answer which is satis�able then the constraint component of each state in thederivation must be satis�able in the constraint theory. Thus solv cannot prune thisderivation. 2We can now show that the successful derivations with satis�able answers areindependent of the solver used and of the literal selection strategy.Theorem 3.2. (Weak Independence of the Literal Selection Strategy and Solver)Let P be a CLP (C) program and G a goal. Suppose there is a successful deriva-tion, D, from G with answer c and that c is satis�able. Then for any literalselection strategy S and constraint solver solv for C, there is a successful deriva-tion from G via S using solv of the same length as D and which gives an answerwhich is a reordering of c.Proof. Let usolv be the solver for C which always returns unknown. Clearly anysolver for C is more powerful than usolv. Thus it follows from Lemma 3.2 that D isalso a successful derivation from S using usolv. Now usolv is well-behaved. Thus,from Theorem 3.1, there is a successful derivation D0 from S via S using usolv ofthe same length as D and with an answer c0 which is a reordering of c. Since c andhence c0 is satis�able, it follows from Lemma 3.2 that D0 is also a derivation fromS via S using solv. 2

www.manaraa.com

133.3. Derivation trees and �nite failureIndependence of the literal selection strategy means that the implementation is freeto use a single selection strategy since all answers will be found. The derivationsfrom a goal for a single literal selection strategy can be conveniently collectedtogether to form a \derivation tree". This is a tree such that each path from thetop of the tree is a derivation. Branches occur in the tree when there is a choice ofrule to reduce an atom with. In a CLP system, execution of a goal may be viewedas a traversal of the derivation tree.De�nition 3.5. A derivation tree for a goal G, program P and literal selectionstrategy S is a tree with states as nodes and constructed as follows. The rootnode of the tree is the state hG truei, and the children of a node in the tree arethe states it can reduce to where the selected literal is chosen with S.A derivation tree represents all of the derivations from a goal for a �xed literalselection strategy. A derivation tree is unique up to variable renaming. A successfulderivation is represented in a derivation tree by a path from the root to a leaf nodewith the empty goal and a constraint which is not false. A failed derivation isrepresented in a derivation tree by a path from the root to a leaf node with theempty goal and the constraint false.Apart from returning answers to a goal, execution of a constraint logic programmay also return the special answer no indicating that the goal has \failed" in thesense that all derivations of the goal are failed for a particular literal selectionstrategy.De�nition 3.6. If a state or goal G has a �nite derivation tree for literal selectionstrategy S and all derivations in the tree are failed, G is said to �nitely fail for S.Example 3.6. Recall the de�nition of the factorial predicate from before. Thederivation tree for the goal fac(0; 2) constructed with a left-to-right literal selec-tion strategy is shown in Figure 3.1. From the derivation tree we see that, with aleft-to-right literal selection strategy, the goal fac(0; 2) �nitely fails.We have seen that the answers obtained from a goal are independent of the literalselection strategy used as long as the solver is well-behaved. However a goal mayalso �nitely fail. It is therefore natural to ask when �nite failure is independent ofthe literal selection strategy.We �rst note that �nite failure is not independent of the literal strategy if thesolver is not well-behaved. For instance consider the solvers from Examples 3.4and 3.5. For both solvers the goal p(X) for the program in Example 3.4 �nitelyfails with a right-to-left literal selection strategy but does not �nitely fail with aleft-to-right literal selection strategy.However, for independence we need more than just a well-behaved solver.Example 3.7. Consider the programp :- p:

www.manaraa.com

14 hfac(0; 2) trueih0 = 0; 2 = 1 trueih2 = 1 0 = 0ih2 falsei h0 = N; 2 = N � F;N � 1; fac(N � 1; F) trueih2 = N � F;N � 1; fac(N � 1; F) 0 = NihN � 1; fac(N � 1; F) 0 = N ^ 2 = N � F ih2 falsei
����������� R1 R2

FIGURE 3.1. Derivation tree for fac(0; 2)and the goal (p; 1 = 2). With a left-to-right selection rule this goal has a singlein�nite derivation, in which p is repeatedly rewritten to itself. With a right-to-leftselection rule however, this goal has a single failed derivation, so the goal �nitelyfails.The reason independence does not hold for �nite failure in this example is thatin an in�nite derivation, a literal which will cause failure may never be selected. Toovercome this problem we require the literal selection strategy to be \fair" [16]:De�nition 3.7. A literal selection strategy S is fair if in every in�nite derivationvia S each literal in the derivation is selected.A left-to-right literal selection strategy is not fair. A strategy in which literals thathave been in the goal longest are selected in preference to newer literals in the goalis fair.For fair literal selection strategies, �nite failure is independent of the selectionstrategy whenever the underlying constraint solver is well-behaved.Lemma 3.3. Let the underlying constraint solver be well-behaved. Let P be a pro-gram and G a goal. Suppose that G has a derivation of in�nite length via a fairliteral selection strategy S. Then, G has a derivation of in�nite length via anyliteral selection strategy S 0.Proof. Let D be a derivation of in�nite length via S. We inductively de�ne a

www.manaraa.com

15sequence of in�nite fair derivations D0; D1; D2; : : : such that for each N , if DN isS0) S1) � � �) SN) � � �then the derivation pre�x, S0) S1) � � �) SN ;is a derivation from G via S 0. The limit of this sequence is an in�nite derivationfrom G via S 0.For the base case N = 0, the derivation is just D itself. Now assume that DN isS0) S1) � � �) SN) SN+1) SN+2) � � �Let the literal L be selected by S 0 in SN . As DN is fair, L must also be selectedat some stage in DN , say at SN+i where i � 0. By applying Lemma 3.1 i times wecan reorder DN to obtain a derivation DN+1 of the formS0) S1) � � �) SN) S0N+1) S0N+2) � � �in which L is selected in state SN . By constructionS0) S1) � � �) SN) S0N+1is a derivation from G via S 0. Also DN+1 is fair as it has only reordered a literalselection in the fair derivation DN . 2Theorem 3.3. Assume that the underlying solver is well-behaved. Let P be a pro-gram and G a goal. Suppose that G �nitely fails via literal selection strategy S.Then, G will �nitely fail via any fair literal selection strategy.Proof. We prove the contrapositive, namely that if G does not �nitely failvia a fair literal selection strategy S 0 then G cannot �nitely fail via any otherstrategy, say S. If G does not �nitely fail with S 0, then the derivation tree D for Gconstructed with S 0 must have either a successful derivation or be in�nite in size.If D contains a successful derivation then from Theorem 3.1 there will also be asuccessful derivation via S, so G does not �nitely fail with S. Otherwise if D hasno successful derivations but is in�nite, then it must have a derivation of in�nitelength by Koenig's Lemma. By Lemma 3.3 there must be an in�nite derivationfrom G via S. But this means that G does not have a �nite derivation tree with Sand so does not �nitely fail with S. 23.4. Breadth-�rst derivationsIt will prove useful in subsequent sections to introduce a type of canonical top-down evaluation strategy. In this strategy all literals are reduced at each stepin a derivation. For obvious reasons, such a derivation is called \breadth �rst."Breadth-�rst derivations were �rst introduced for logic programs in [24].De�nition 3.8. A breadth-�rst derivation step from hG0 c0i to hG1 c1i usingprogram P , written hG0 c0i)BF (P) hG1 c1i, is de�ned as follows. Let G0consist of the atoms A1; : : : ; Am and the primitive constraints c01; : : : ; c0n.

www.manaraa.com

16 1. If TC j= :~9 (c0 ^ Vni=1 c0i) or for some Aj in G0, defnP (Aj) = ;, then G1 isthe empty goal and c1 is false.2. Otherwise, c1 is c0 ^ Vni=1 c0i and G1 is B1 ^ � � � ^ Bm where each Bj is areduction of Aj by some rule in the program using a renaming such that allrules are variable-disjoint.A breadth-�rst derivation (or BF-derivation) from a state hG0 c0i for programP is a sequence of stateshG0 c0i)BF (P) hG1 c1i)BF (P) � � �)BF (P) hGi cii)BF (P) � � �such that for each i � 0, there is a breadth-�rst derivation step from hGi ciito hGi+1 ci+1i. When the program P is �xed we will use the notation)BFrather than)BF (P).For our purposes we have de�ned the consistency check for breadth-�rst derivationsin terms of satis�ability in the constraint theory. In e�ect the solver is restricted tobe theory complete. However, one can also generalize this check to use an arbitraryconstraint solver.We extend the de�nition of answer, successful derivation, failed derivation, deriva-tion tree and �nite failure to the case of BF-derivations in the obvious way.Example 3.8. Recall the factorial program and goal fac(1; X) from Example 3.1.A successful BF-derivation from this goal is:hfac(1; X) truei+BFh1 = N;X = N � F;N � 1; fac(N � 1; F) truei+BFhN � 1 = 0; F = 1 1 = N ^X = N � F ^N � 1i+BFh2 1 = N ^X = N � F ^N � 1 ^N � 1 = 0 ^ F = 1iWe now relate BF-derivations to the more standard operational de�nition. Wecan mimic the construction of a BF-derivation by choosing a literal selection strat-egy in which the \oldest" literals are selected �rst.De�nition 3.9. The index of a literal in a derivation is the tuple hi; ji where i isthe index of the �rst state in the derivation in which the literal occurs and j isthe index of its position in this state.The index-respecting literal selection strategy is to always choose the literalwith the smallest index where indices are ordered lexicographically.Note that the index-respecting literal selection strategy is fair.De�nition 3.10. Let D be a derivation and DBF a breadth-�rst derivation fromthe same state. Let DBF be of the formhG0 c0i)BF hG1 c1i)BF � � �)BF hGi cii)BF � � �

www.manaraa.com

17D and DBF correspond if D has the formhG0 c0i) � � �) hG1 c1i) � � �) hGi cii) � � �and D and DBF are both in�nite or both have the same last state.For instance the BF-derivation of Example 3.8 corresponds to the derivation ofExample 3.1.It is straightforward to show that:Lemma 3.4. Let P be a CLP (C) program and G a goal.1. Every �nished derivation D from G for program P via the index-respectingliteral selection strategy and using a theory complete solver has a correspond-ing breadth-�rst derivation DBF from G for P .2. Every breadth-�rst derivation DBF from G for program P has a correspond-ing derivation D from a goal G via the index-respecting literal selection strat-egy and using a theory complete solver. 2We can now relate BF-derivations to usual derivations. The result for successfulderivations follows immediately from the above lemma and Theorem 3.2Theorem 3.4. Let P be a CLP (C) program and G a goal.1. For every successful derivation from G with satis�able answer c, there is asuccessful BF-derivation which gives an answer which is a reordering of c.2. For every successful BF-derivation from G with answer c and for any literalselection strategy S and constraint solver solv for C there is a successfulderivation from G via S using solv that gives an answer which is a reorderingof c. 2The correspondence for �nitely failed goals requires a little more justi�cation.Theorem 3.5. Let P be a program and G a goal. G �nitely fails using BF-derivationsi� there exists a well-behaved solver solv and selection strategy S such that G�nitely fails using (usual) derivations.Proof. From Lemma 3.4, G �nitely fails using BF-derivations i� G �nitely failswith the index-respecting literal selection strategy when using a theory completesolver. We must now prove that if G �nitely fails with some solver solv and someliteral selection strategy, S say, then G �nitely fails with the index-respecting literalselection strategy when using a theory complete solver. From Theorem 3.3 andsince the index-respecting literal selection strategy is fair, if G �nitely fails with Sand with solver solv then G �nitely fails with the index-respecting literal selectionstrategy when using solv. Thus from Lemma 3.2, G �nitely fails with the index-respecting literal selection strategy when using a theory complete solver since thisis more powerful than solv. 24. THE SEMANTICS OF SUCCESSIn this section we give an algebraic and logical semantics for the answers to a CLPprogram and show that these semantics accord with the operational semantics.

www.manaraa.com

18 4.1. Logical semanticsWe �rst look at a logical semantics for a CLP (C) program. We can view each rulein a CLP program, sayA :- L1; : : : ; Lnas representing the formula~8(A L1 ^ : : :^Ln)and the program is understood to represent the conjunction of its rules.The logical semantics of a CLP (C) program P is the theory obtained by addingthe rules of P to a theory of the constraint domain C.The �rst result we need to show for any semantics is that the operational seman-tics is sound with respect to the semantics. For the logical semantics soundnessmeans that any answer returned by the operational semantics, logically implies theinitial goal. Thus the answer c to a goal G is logically read as: if c holds, then sodoes G.Lemma 4.1. Let P be a CLP (C)program. If hG ci is reduced to hG0 c0i,P; TC j= (G0 ^ c0)! (G ^ c):Proof. Let G be of the form L1; : : : ; Ln where Li is the selected literal. Thereare four cases to consider.The �rst case is when Li is a primitive constraint and solv(c ^ Li) 6= false.In this case G0 is L1; : : : ; Li�1; Li+1; : : : ; Ln and c0 is c ^ Li. Thus G0 ^ c0 isL1 ^ � � � ^ Li�1 ^ Li+1 ^ � � � ^ Ln ^ c ^ Li which is logically equivalent to G ^ c.Thus, P; TC j= (G0 ^ c0)! (G ^ c).The second case is when Li is a primitive constraint and solv(c ^ Li) = false.In this case G0 is 2 and c0 is false. Trivially P; TC j= (G0 ^ c0)! (G ^ c) because(G0 ^ c0) is equivalent to false.The third case is when Li is a user de�ned constraint. Let Li be of the formp(s1; : : : ; sm). In this case, there is a renaming,p(t1; : : : ; tn) :- Bof a rule in P such that G0 is L1; : : : ; Li�1; s1 = t1; : : : ; sm = tm; B; Li+1; : : : ; Lnand c0 is c. Then, clearly P j= B ! p(t1; : : : ; tn)Hence, since TC treats = as identity,TC j= s1 = t1; : : : ; sm = tm ! p(s1; : : : ; sn)$ p(t1; : : : ; tn)and so from the above two statementsP; TC j= B ^ s1 = t1; : : : ; sm = tm ! p(s1; : : : ; sn)Hence from the above and since the remaining parts are unchanged.P; TC j= (G0 ^ c0)! (G ^ c)The fourth case is when Li is a user de�ned constraint for which defnP (Li) isempty. In this case G0 is 2 and c0 is false. As in the second case above, triviallyP; TC j= (G0 ^ c0)! (G ^ c) because (G0 ^ c0) is equivalent to false. 2The above lemma straightforwardly gives us the soundness of success.

www.manaraa.com

19Theorem 4.1. (Logical Soundness of Success)Let TC be a theory for constraint domain C and P be a CLP (C) program. If goalG has answer c, thenP; TC j= c! G:Proof. Let c be the answer. Then there must be a �nite derivationhG0 c0i) : : :) hGn cniwhere G0 is G, c0 is true, Gn is 2 and c is �9vars(G)cn. By repeated use of Lemma4.1, we have that P; TC j= (Gn ^ cn) ! (G0 ^ c0). Thus P; TC j= cn ! G and soP; TC j= �9vars(G)cn ! G. 24.2. Algebraic semanticsWe now turn our attention to the algebraic semantics. Such a semantics dependson us �nding a model for the program which is the \intended" interpretation ofthe program. For logic programs this model is the least Herbrand model. Inthe context of constraint logic programs we must generalize this approach to takeinto account the intended interpretation of the primitive constraints. Clearly theintended interpretation of a CLP program should not change the interpretation ofthe primitive constraints or function symbols. All it can do is extend the intendedinterpretation so as to provide an interpretation for each user-de�ned predicatesymbol in P .De�nition 4.1. A C-interpretation for a CLP (C) program P is an interpretationwhich agrees with DC on the interpretation of the symbols in C.Since the meaning of the primitive constraints is �xed by C, we may representeach C-interpretation I simply by a subset of the C-base of P , written C-baseP ,which is the setfp(d1; : : : ; dn) j p is an n-ary user-de�ned predicate in Pand each di is a domain element of DC g:Note that the set of all possible C-interpretations for P is just the set of all subsetsof C-baseP , P(C-baseP). Also note that C-baseP itself is the C-interpretation inwhich each user-de�ned predicate is mapped to the set of all tuples, that is, inwhich everything is considered true.The intended interpretation of a CLP program P will be a \C-model" of P .De�nition 4.2. A C-model of a CLP (C) program P is a C-interpretation which isa model of P .Every program has a least C-model which is usually regarded as the intendedinterpretation of the program since it is the most conservative C-model. This resultis analogous to that for logic programs in which the algebraic semantics of a logicprogram is given by its least Herbrand model. The proof of existence of the leastmodel is essentially identical to that for logic programs. The proof makes use ofthe following obvious result:

www.manaraa.com

20 Lemma 4.2. Let P be a CLP (C) program, L a literal and M and M 0 be C-modelsof P , where M � M 0. Then for any valuation �, M j=� L implies M 0 j=� L.2Theorem 4.2. (Model Intersection Property)Let M be a set of C-models of a CLP (C) program P . Then TM is a C-modelof P .Proof. Suppose to the contrary TM is not a model of P . Then there exists arule A :- L1; : : : ; Ln and valuation � where TM j=� L1^� � �^Ln but TM 6j=� A.By n uses of Lemma 4.2 for each model M 2MM j=� L1 ^ � � � ^ Lnand since M is a model of P , M j=� A. Hence �(A) 2M and hence �(A) 2 TM,which is a contradiction. 2If we let M be the set of all C-models of P in the above theorem we arrive at:Corollary 4.1. Every CLP (C) program has a least C-model. 2De�nition 4.3. We denote the least C-model of a CLP (C) program P by lm(P; C).Example 4.1. Recall the factorial program from Example 3.1fac(0; 1):fac(N;N � F) : � N � 1; fac(N � 1; F):It has an in�nite number of Real-models, includingffac(n; n!) j n 2 f0; 1; 2; : : :gg [ffac(n; 0) j n 2 f0; 1; 2; : : :gg:and ffac(r; r0) j r; r0 2 Rg:As one might hope, the least Real-model isffac(n; n!) j n 2 f0; 1; 2; : : :gg:As one would hope, if a goal is satis�able in the least C-model then it holds inall C-models. Hence we have the following theorem:Theorem 4.3. Let P be a CLP (C) program, G a goal and � a valuation. ThenP;DC j=� G i� lm(P; C) j=� G.Proof. The \if" direction follows from the fact that G is a conjunction of literalsand Lemma 4.2 above. The \only if" direction follows from the argument behindTheorem 4.2. 2Corollary 4.2. Let P be a CLP (C) program and G a goal. Then P;DC j= ~9G i�lm(P; C) j= ~9G. 2The next theorem shows that the operational semantics is sound for the leastmodel. This follows immediately from Theorem 4.1.

www.manaraa.com

21Theorem 4.4. (Algebraic Soundness of Success)Let P be a CLP (C) program. If goal G has answer c, then lm(P; C) j= c ! G:24.3. Fixpoint semanticsSoundness of the logical and algebraic semantics ensures that the operational se-mantics only returns answers which are solutions to the goal. However, we wouldalso like to be sure that the operational semantics will return all solutions to thegoal. This is called completeness.To prove completeness it is necessary to introduce yet another semantics forCLP programs which bridges the gap between the algebraic and the operationalsemantics. This semantics, actually two semantics, are called �xpoint semanticsand generalize the TP semantics for logic programs.The �xpoint semantics is based on the \immediate consequence operator" whichmaps the set of \facts" in a C-interpretation to the set of facts which are impliedby the rules in the program. In a sense, this operator captures the Modus Ponensrule of inference. The T TermP operator is due to van Emden and Kowalski [4] (whocalled it T). Apt and van Emden [1] later used the name TP which has becomestandard.De�nition 4.4. Let P be a CLP (C) program. The immediate consequence functionfor P is the function T CP : P(C-baseP)! P(C-baseP). Let I be a C-interpretation,and let � range over valuations for C. Then T CP (I) is de�ned asf�(A) j A :- L1; : : : ; Ln is a rule in P for which I j=� L1 ^ : : : ^ LngThis is quite a compact de�nition. It is best understood by noting thatI j=� p1(~t1) ^ � � � ^ p1(~tn)i� for each literal pi(~ti) either pi is a primitive constraint and DC j=� pi(~ti) or pi isa user-de�ned predicate and pi(�(~ti)) 2 I.Note that P(C-baseP) is a complete lattice ordered by the subset relation onC-interpretations (viewed as sets). It is not too hard to show [1] that:Theorem 4.5. Let P be a CLP (C) program. Then T CP is continuous. 2Recall the de�nition of the ordinal powers of a function F over a complete lat-tice X:F " � = �FfF " �0 j �0 < �g if � is a limit ordinalF (F " (�� 1)) if � is a successor ordinaland dually,F # � = �ufF # �0 j �0 < �g if � is a limit ordinalF (F # (�� 1)) if � is a successor ordinalSince the �rst limit ordinal is 0, it follows that in particular, F " 0 = ?X (thebottom element of the lattice X) and F # 0 = >X (the top element).From Kleene's �xpoint theorem we know that the the least �xpoint of any con-tinuous operator is reached at the �rst in�nite ordinal !. Hence,

www.manaraa.com

22 Corollary 4.3. lfp(T CP) = T CP " !. 2Example 4.2. Let P be the factorial program from Example 4.1. ThenTRealP " 0 = ? = ;TRealP " 1 = TRealP (TRealP " 0) = ffac(0; 1)gTRealP " 2 = TRealP (TRealP " 1) = ffac(0; 1); fac(1; 1)gTRealP " 3 = TRealP (TRealP " 2) = ffac(0; 1); fac(1; 1); fac(2; 2)g...TRealP " k = TRealP (TRealP " (k � 1)) = ffac(n; n!) j n 2 f0; 1; 2; : : :; k � 1gg...TRealP " ! = Sk�0 TRealP " k = ffac(n; n!) j n 2 f0; 1; 2; : : :; gg:Thus lfp(TRealP) = ffac(n; n!) j n 2 f0; 1; 2; : : :gg. It also useful to consider thegreatest �xpoint of T CP . We have thatTRealP # 0 = Real-baseP = ffac(r; r0) j r; r0 2 RgTRealP # 1 = TRealP (TRealP # 0) = ffac(0; 1)g [ffac(r; r0) j r � 1 and r; r0 2 RgTRealP # 2 = TRealP (TRealP # 1) = ffac(0; 1); fac(1; 1)g [ffac(r; r0) j r � 2 and r; r0 2 Rg...TRealP # k = TRealP (TRealP # (k � 1)) = ffac(n; n!) j n 2 f0; 1; 2; : : : ; k� 1gg[ffac(r; r0) j r � k and r; r0 2 Rg...TRealP # ! = Tk�0 TRealP # k = ffac(n; n!) j n 2 f0; 1; 2; : : :ggTRealP # ! + 1 = TRealP (TRealP # !) = ffac(n; n!) j n 2 f0; 1; 2; : : :gg:Thus gfp(TRealP) = ffac(n; n!) j n 2 f0; 1; 2; : : :gg. As this is the same as the least�xpoint, this is the unique �xpoint of the program P de�ning the fac predicate.In general, the immediate consequence function of a program may have many�xpoints, and the greatest �xpoint may not be reached by step ! in the descendingKleene sequence. This is also the case for logic programs.Example 4.3. Consider the CLP (Term) program P :q(a) :- p(X)p(f(X)) :- p(X)The downward powers of T TermP areTTermP # 0 = Term-baseP = fq(r) j r = f i(a); 0 � ig [fp(r) j r = f i(a); 0 � igTTermP # 1 = T TermP (T TermP # 0) = fq(a)g [fp(r) j r = f i(a); 1 � ig...TTermP # k = T TermP (T TermP # (k � 1)) = fq(a)g [fp(r) j r = f i(a); k � ig...TTermP # ! = = fq(a)gTTermP # ! + 1 = T TermP (T TermP # !) = ;:

www.manaraa.com

23The greatest �xpoint of T TermP is T TermP # ! + 1.There is a simple relationship between the C-models of a program and the T CPoperator: the C models are exactly the pre-�xpoints of T CP . The following resultfor the Term constraint domain was proven in [4], the proof below is essentiallyidentical.Lemma 4.3. Let P be a CLP (C) program. Then M is a C-model of P i� M is apre-�xpoint of T CP , that is T CP (M) �M .Proof. Now M is a C-model of P i� for each rule A :- L1; :::; Ln in P , M j=~8A L1 ^ � � � ^ Ln. Thus,M is a C-model of P i� for each rule A :- L1; :::; Ln inP and for each valuation �, M j=� A L1 ^ � � � ^ Ln. Thus, M is a C-model of Pi� for each rule A :- L1; :::; Ln in P and for each valuation �, ifM j=� L1^� � �^Lnthen M j=� A. Hence by the de�nition of T CP , M is a C-model of P i� T CP (M) �M .2Given this relationship, it is straightforward to show that the least model of aprogram P is also the least �xpoint of T CP . This will (eventually) allow us to relatethe algebraic semantics to the �xpoint semantics and to the operational semantics.Theorem 4.6. Let P be a CLP (C) program. Then lm(P; C) = lfp(T CP) = T CP " !.Proof.lm(P; C) = ufM jM is a C-model of Pg= ufM jM is a pre-�xpoint of Pg From Lemma 4.3= lfp(T CP) By the Knaster-Tarski Fixpoint Theorem [15]:It follows from Corollary 4.3 that lfp(T CP) = T CP " !. 2We now introduce another �xpoint semantics which is a modi�cation of theimmediate consequence function which works on the syntactic level of constraintsrather than the semantic level of valuations. It will be used to bridge the gapbetween the immediate consequence function and the operational semantics. Itworks on \facts" which are CLP rules in which the body contains only a singleexistentially quanti�ed constraint.De�nition 4.5. A fact is of the form A :- c where A is an atom and c is aconstraint.De�nition 4.6. Given a rule R of the form A :- G, and a set of facts F , we cande�ne an immediate consequence of F using R, as the factA :- cwhere there exists a successful BF-derivationhG truei)�BF (F) h2 ciThat is, there is a breadth-�rst derivation for G using the set of facts F as theprogram, that has last state h2 ci.Note that because of the form of F any BF derivation can be at most two stepslong, because the bodies of rules in F do not contain atoms. For example if c0 isthe conjunction of primitive constraints appearing in G a derivation for G has the

www.manaraa.com

24 form hG truei)BF (F) hc1 c0i)BF (F) h2 c0 ^ c1i:Let SfRg(F) denote the set of all immediate consequences of F using R.The immediate consequences of a set F of facts using a program P , denotedSP (F), is de�ned bySP (F) = [R2P SfRg(F)The function SP was introduced by Gabrielli and Levi [6], inspired by relatedfunctions de�ned in [8] and the S-semantics [5]. We are using a di�erent, thoughequivalent, formulation than [6].Example 4.4. Let F1 = ffac(0; 1)g, and R = (fac(N;N � F) :- N � 1; fac(N �1; F)). There is a single successful BF derivationhN � 1; fac(N � 1; F) truei)BF (F1) hN � 1 = 0; F = 1 N � 1i)BF (F1) h2 N � 1 ^N � 1 = 0 ^ F = 1iHence SfRg(F1) is ffac(N;N � F) :- N � 1; N � 1 = 0; F = 1g.Let P be the factorial program from Example 3.1 . Since SP is a map over acomplete lattice, the set of all facts for predicates de�ned in the original program,the ordinal powers of SP can be de�ned in the usual way. ThenSP " 0 = fgSP (;) = SP " 1 = ffac(0; 1)gSP (ffac(0; 1)g) = SP " 2 = ffac(0; 1); (fac(N;N � F):-N � 1; N � 1 = 0; F = 1:)gSP " 3 = ffac(0; 1); (fac(N;N � F):-N � 1; N � 1 = 0; F = 1:);(fac(N;N � F):-N � 1, N � 1 = N 0,F = N 0 � F 0, N 0 � 1,N 0 � 1 = 0, F 0 = 1.) g...As one would expect, the SP operator is also continuous. The proof is analogousto the proof for TP .Theorem 4.7. Let P be a CLP (C) program. Then SP is continuous. 2Corollary 4.4. Let P be a CLP (C) program. Thenlfp(SP) = SP " ! = [1i=0SP " i: 2As one would expect, there is a very strong relationship between both �xpointsemantics. To formalize this correspondence, we need to translate facts to elementsin the C-base. This is done by means of \grounding":De�nition 4.7. Let C be a constraint domain. Let F be the fact A :- c. We

www.manaraa.com

25de�ne[F]C = f�(A) j DC j=� cg:This is lifted to sets of facts in the obvious way: let S be a set of facts, then[S]C =[f[F]C j F 2 Sg:For example,[p(X;Y) :- X = Y]Real = fp(r; r) j r 2 Rg:and [fac(N;N � F) :- N � 1; N � 1 = N 0; F = N 0 � F 0; N 0 � 1; N 0 � 1 = 0; F 0 = 1]Real= ffac(2; 2)gClearly variable names do not a�ect grounding, hence:Lemma 4.4. Let � be a renaming and F a fact. Then [F]C = [�(F)]C. 2Now we can show how the application of SP and T CP correspond.Lemma 4.5. Let P be a CLP (C) program and F a set of facts. Then,[SP (F)]C = T CP ([F]C):Proof. We �rst show that T CP ([F]C) � [SP (F)]C.Now, if y 2 T CP ([F]C), there is a rule A :- G in P and a valuation � such thaty is �(A) and[F]C j=� G: (4.1)Let G contain atoms p1(~s1); :::; pn(~sn) and let c0 be the conjunction of primitiveconstraints which appear in G. From (4.1),DC j=� c0 (4.2)and for each pi(~si) there is a fact (pi(~ti) :- ci) in F , such that �(pi(~si)) 2 [(pi(~ti) :- ci)]C.From Lemma 4.4, we can assume that these facts have been renamed so thatthe variables in each pi(~ti) :- ci are disjoint from each other and from those inA :- G.Now �(pi(~si)) 2 [pi(~ti) :- ci]C implies that there is a valuation �i such that�(pi(~si)) = �i(pi(~ti)) and DC j=�i ci. From the disjointedness assumption, thevaluation �0 de�ned by�0(x) = ��i(x) when x 2 vars(pi(~ti) :- ci)�(x) otherwise.is well de�ned. Furthermore, for each i,DC j=�0 ~si = ~ti ^ ciand from (4.2),DC j=�0 c0:Let c be the constraintc0 ^ ~s1 = ~t1 ^ c1 ^ � � � ^ ~sn = ~tn ^ cn:

www.manaraa.com

26 Then c is satis�able, because DC j=�0 c.By construction, there is a BF derivation using the program F :hG truei)BF (F) h~s1 = ~t1 ^ c1 ^ � � � ^ ~sn = ~tn ^ cn c0i)BF (F) h2 c0 ^ ~s1 = ~t1 ^ c1 ^ � � � ^ ~sn = ~tn ^ cniHence (A :- 9vars(A)c) 2 SP (F). By construction �0(A) 2 [A :- 9vars(A)c]C.But �0(A) = �(A) = y, so y 2 [SP (F)]C.We must now show that [SP (F)]C � T CP ([F]C). This can be done by reversingthe implications in the above proof. 2Theorem 4.8. Let P be a CLP (C) program. Then,[lfp(SP)]C = lfp(T CP):Proof. We �rst prove by trans�nite induction that for all ordinals �,[SP " �]C = T CP " �:There are two cases to consider. The �rst is when � is a successor ordinal. We havethat T CP " � = T CP (T CP " � � 1) By de�nition of the ordinal power= T CP ([SP " � � 1]C) By assumption= [SP (SP " � � 1)]C From Lemma 4.5= [SP " �]C By de�nition of the ordinal power.The second case is when � is a limit ordinal. We have thatT CP " � = SfT CP "
j
 < �g By de�nition of the ordinal power= Sf[SP "
]C j
 < �g By assumption= [SfSP "
j
 < �g]C From de�nition of grounding= [SP " �]C By de�nition of the ordinal power.Thus, by trans�nite induction, for all ordinals �,[SP " �]C = T CP " �:It follows from Corollaries 4.3 and 4.4 that [lfp(SP)]C = lfp(T CP): 24.4. Correspondence between �xpoint and operational semanticsAt �rst sight the two �xpoint semantics are quite di�erent from the operationalsemantics, but in fact the ordinal powers of the SP operator are strongly relatedto BF-derivations, as shown in the following lemma. Recall that BF-derivationsare de�ned with respect to the theory, or, equivalently, they always make use of atheory-complete solver.Lemma 4.6. For a CLP (C) program P and goal G, there is a successful BF deriva-tion of length less than or equal to n + 1 for state hG0 c0i in P with answer ci� there is a successful BF derivation for hG0 c0i in SP " n with answer c0 suchthat TC j= �9vars(G0;c0)c$ �9vars(G0;c0)c0.Proof. We give the \then" direction, the \if" direction is proved analogously.The proof is by induction on n. For the base case, the only one step successfulBF derivations are where G0 is entirely made up of constraints. In this case the

www.manaraa.com

27derivation hG0 c0i)BF (Q) h2 c0 ^G0iexists regardless of the program Q, and clearly the same derivation is a successfulderivation in the empty program SP " 0.Consider a successful BF derivation in P of the formhG0 c0i)BF (P) hG1 c1i)BF (P) � � �)BF (P) h2 cn+1iConsider the BF derivation stephG0 c0i)BF (P) hG1 c1iThen c1 is c0 ^ c00 where c00 are the constraints in G0. Let pi(~si); 1 � i � n be theatoms in G0.The derivation step uses renamed apart program rules pi(~ti) :- Bi for eachatom pi(~si) to obtainG1 � ~s1 = ~t1; B1; ~s2 = ~t2; B2; : : : ; ~sn = ~tn; BnLet V1 be vars(hG1 c1i). By the induction hypothesis there is a successful BFderivation for hG1 c1i with �nal state h2 x0i where TC j= �9V1cn+1 $ �9V1x0. Itmust take the formhG1 c0 ^ c00i)BF (SP "(n�1)) hx c0 ^ c00 ^ c01i)BF (SP "(n�1)) h2 x0iwhere c01 is the constraints in G1, x is the constraints that result from replacing theatoms in G and x0 is c0 ^ c00 ^ c01 ^ x.Let xi be the constraints in Bi. Then c01 is ~s1 = ~t1 ^ x1 ^ � � � ^ ~sn = ~tn ^ xn.Let qij(~uij); 1 � j � mi be the atoms in Bi. For each qij there exists a renamedapart copy of a fact in SP " (n � 1),qij(~vij) :- Bijused in the BF derivation step. Hencex � n̂i=1 mîj=1~uij = ~vij ^BijBecause x0 is satis�able, each of the constraints in the following BF-derivationsare satis�able. We have a successful BF-derivation for each Bi.hBi truei)BF (SP "(n�1)) hmîj=1~uij = ~vij ^Bij xii)BF (SP "(n�1)) h2 xi ^ mîj=1~uij = ~vij ^BijiLet Ci be �9vars(~ti)xi ^Vmij=1 ~uij = ~vij ^Bij . Hence an (appropriately renamed)copy of each of the facts pi(~ti) :- Ciexists in SP " n by the de�nition of SP .

www.manaraa.com

28 We can now construct a successful derivation for hG0 c0i in SP " n, using somerenamed apart versions of the above facts �i(pi(~ti) :- Ci), to rewrite each atompi(~si). hG0 c0i)BF (SP "n) h~s1 = �1(~t1); �1(C1); : : : ; ~sn = �n(~tn); �n(Cn) c0 ^ c00i)BF (SP "n) h2 c0 ^ c00 ^ ~s1 = �1(~t1) ^ �1(C1) ^ � � � ^ ~sn = �n(~tn) ^ �n(Cn)iLet c0 be c0 ^ c00 ^ ~s1 = �1(~t1) ^ �1(C1) ^ � � � ^ ~sn = �n(~tn) ^ �n(Cn) and letV0 = vars(hG0 c0i). Then�9V0c0 $ c00 ^ c0 ^ �9V0 Vni=1 ~si = �i(~ti) ^ �i(C1)since c0 and c00 only involve variables in V0$ c0 ^ c00 ^Vni=1(�9V0~si = �i(~ti) ^ �i(Ci))since each expression �i(~ti) ^ �i(Ci) does not share variables$ c0 ^ c00 ^Vni=1(�9V0~si = ~ti ^Ci)since variables in ~ti and Ci do not intersect those in G0 and c0$ c0 ^ c00 ^Vni=1(�9V0~si = ~ti ^ xi ^Vmij=1 ~uij = ~vij ^Bij)by de�nition of Ci$ �9V0c0 ^ c00 ^Vni=1(~si = ~ti ^ xi ^Vmij=1 ~uij = ~vij ^Bij)since by construction the terms do not share variables$ �9V0c0 ^ c00 ^ ~s1 = ~t1 ^ � � �~sn = ~tn ^ x1 ^ � � � ^ xn ^Vni=1Vmij=1 ~uij = ~vij ^Bijrearranging terms$ �9V0c0 ^ c00 ^ c01 ^ x by the de�nition of c01 and x$ �9V0x0 by de�nition of x0$ �9V0cn+1 because V0 � V1 and �9V1cn+1 $ �9V1x0This completes the proof of the induction step. 2Using the above lemma and Corollary 4.4 it is easy to show the following:Lemma 4.7. Let P be a CLP (C) program. Goal G has an successful BF derivationwith answer c for program P i� there exists some integer n such that G has asuccessful BF-derivation for program SP " n with answer c0 such that TC j= c$c0. 2Now we are in a position to relate the SP operator to the standard top-downsemantics.Theorem 4.9. Let P be a CLP (C) program. Goal G has an answer c for programP i� G has a successful derivation for program lfp(SP) with answer c0 such thatTC j= c$ c0.Proof. Since a successful BF-derivation is �nite, G has a successful BF-derivationfor program lfp(SP) i� there exists some integer n such that G has a successful BF-derivation for program SP " n. Using this observation, the result is an immediateconsequence of Theorem 3.4 and Lemma 4.7. 2The results in this subsection were �rst presented in [6].4.5. CompletenessWe are now in a position to prove that the operational semantics is complete forthe algebraic semantics.

www.manaraa.com

29Theorem 4.10. (Algebraic Completeness of Success)Let P be a CLP (C) program, G be a goal and � a valuation. Iflm(P; C) j=� G:then G has an answer c such that DC j=� c.Proof. Iflm(P; C) j=� G; (4.3)then, from Theorem 4.6,lfp(T CP) j=� G:From Theorem 4.8,[lfp(SP)]C j=� G:Let c0 be the conjunction of constraints in G, and pi(~si); 1 � i � n be the atomsin G. For each pi(~si) there exist renamed apart versions of facts in lfp(SP)(pi(~ti) :- ci) and valuations �i such that �(pi(~si)) = �i(pi(~ti)) and DC j=�i ci.From the de�nition of lfp(SP) there also exists k such that each (pi(~ti) :- ci) isin SP " k. From the disjointedness assumption, the valuation �0 de�ned by�0(x) = � �i(x) when x 2 vars(pi(~ti) :- ci)�(x) otherwise.is well de�ned. Furthermore, for each i,DC j=�0 ~si = ~ti ^ c0iand from (4.3),DC j=�0 c0:Let c0 � c0 ^ ~s1 = ~t1 ^ c1 ^ � � � ^ ~sn = ~tn ^ cn. ThenDC j=�0 c0:Hence there is a successful BF derivation for program SP " k:hG truei)BF (SP "k)) h~s1 = ~t1 ^ c1 ^ � � � ^ ~sn = ~tn ^ cn c0i)BF (SP "k) h2 c0iBy Theorem 4.9 there exists a successful derivation for G in P with answer c suchthat TC j= �9vars(G)c0 $ c. Hence, since DC models TC,DC j=�0 cand since � and �0 are the same on the variables of G, DC j=� c: 2We can rephrase Theorem 4.4 and Theorem 4.10 to succinctly capture thatthe solutions to the goal in the minimal model are exactly the solutions to theconstraints the operational semantics returns as goals. The \if" direction followsfrom Theorem 4.10 and the \only if" from Theorem 4.4.Theorem 4.11. Let P be a CLP (C) program and G be a goal with answers c1; c2; : : :.Thenlm(P; C) j= G$ 1_i=1 ci: 2

www.manaraa.com

30 The second result we need to show is that the operational semantics is completewith respect to the logical semantics. For the logical semantics, completeness isunderstood as that the answers returned by the operational semantics cover all ofthe constraints which imply the goal.Theorem 4.12. (Logical Completeness of Success)Let TC be a theory for constraint domain C and P be a CLP (C) program. LetG be a goal and c a constraint. If P; TC j= c! G then G has answers c1; : : : ; cnsuch thatTC j= c! (c1 _ : : :_ cn):Proof. We �rst prove that ifP; TC j= c! G:then TC j= c! 1_i=1 ci:where c1; c2; : : : are the answers to G.Given thatP; TC j= c! G (4.4)we show that for each model I of TCI j= c! 1_i=1 ci: (4.5)We can consider the models of P which are based on I. Because lm(P; I) is a modelof P; TC, by (4.4), we have thatlm(P; I) j= c! G: (4.6)By Theorem 4.11, we have thatlm(P; I) j= G$ (1_i=1 ci):Thus by (4.6),lm(P; I) j= c! (1_i=1 ci):And this meansI j= c! 1_i=1 ci:The theorem now follows from the Compactness Theorem (see for example [21]).2

www.manaraa.com

31This is a very strong result. It is worth pointing out, that in general, n can begreater than 1.Example 4.5. Consider the CLP (Real) program P :p(X) :- X � 2:p(X) :- X � 2:Then P; TReal j= true! p(X):and the answers to p(X) are X � 2 and X � 2. Both answers are needed to covertrue: TReal j= true! (X � 2 _X � 2)However, for some constraint domains, the number of answers which need to beconsidered is just one. The following de�nition captures such cases.De�nition 4.8. A theory T for a constraint domain has independence of constraintsif for all constraints c; c1; : : : ; cn,T j= c$ (�9vars(c)c1 _ : : :_ �9vars(c)cn):implies that for some i, T j= c$ �9vars(c)ci:The following is a corollary of Theorem 4.12.Corollary 4.5. Let P be a CLP (C) program, G be a goal and let TC have indepen-dence of constraints. If P; TC j= c ! G for constraint c, then G has an answerA such that P; TC j= c! A: 2The constraint theory TReal does not have independence of constraints, witnessExample 4.5. The constraint theory TTerm does have independence of constraints aslong as there are an in�nite number of function symbols. This explains the strongerlogical completeness result for logic programs, for which any logical answer will becovered by a single quali�ed answer.Finally, we can recast the results of this section in terms of the program's \successset." This set essentially contains the answers that the program will give to singleatom queries.De�nition 4.9. The success set of a program P , SSP , is the set of factsfA :- c j c is an answer to A for P for some atom Ag:Theorem 4.13. Let P be a CLP (C) program. The following are equivalent:� [SSP]C ,� [lfp(SP)]C ,� lfp(T CP),� lm(P; C).

www.manaraa.com

32 Proof. The �rst equivalence follows from Theorem 4.9, the second from Theo-rem 4.8, and the third from Theorem 4.6. 25. SEMANTICS FOR FINITE FAILUREWe have seen that in the operational semantics for CLP programs, goals can also�nitely fail. We now give an algebraic and a logical semantics for �nite failure forCLP languages. Our �rst step is to de�ne the Clark completion of a program.5.1. The Clark completionThe algebraic and logical semantics we gave in the last section for successful goalsdoes not �t well with �nite failure, since there is at least one C-model, namelythe C-base, in which any goal is satis�able. The problem is that there are toomany models for a program. This is possible because a rule is only read as an \if"de�nition for its head.When dealing with �nite failure, a constraint logic program must be understoodas representing its \Clark completion". The Clark completion captures the reason-able assumption that the programmer really wants the rules de�ning a predicate tobe an \if and only if" de�nition|the rules should cover all of the cases which makethe predicate true. Clark's original de�nition, for logic programs, also included thetheory of Term [2].De�nition 5.1. The de�nition of n-ary predicate symbol p in the program P , isthe formula8X1 : : :8Xn p(X1; : : : ; Xn)$ B1 _ : : :_Bmwhere each Bi corresponds to a rule in P of the formp(t1; : : : ; tn) :- L1; : : : ; Lkand Bi is9Y1 : : :9Yj (X1 = t1 ^ : : :^Xn = tn ^ L1 : : :^ Lk)where Y1; : : : ; Yj are the variables in the original rule and X1; : : : ; Xn are vari-ables that do not appear in any rule. Note that if there is no rule with head p,then the de�nition of p is simply8X1 : : :8Xn p(X1; : : : ; Xn)$ falseas W ; is naturally considered to be false.The (Clark) completion, P ?, of a constraint logic program P is the conjunctionof the de�nitions of the user-de�ned predicates in P .Example 5.1. The completion of the factorial program isfac(X1; X2) $ (X1 = 0 ^X2 = 1) _9N 9F (X1 = N ^X2 = N � F ^N � 1 ^ fac(N � 1; F)):

www.manaraa.com

33If we take a program's completion as the logical formula which captures the truemeaning of the program then the intended interpretation of the program should bea C-interpretation which is a model for the completion.De�nition 5.2. Let P be aCLP (C) program. A C-model for P ? is a C-interpretationwhich is a model for P ?.Example 5.2. Recall the factorial program and its completion from Example 3.1.The only Real-model for the completion is:ffac(n; n!) j n 2 f0; 1; 2; :::gg:Other Real-interpretations, such asffac(n; n!) j n 2 f0; 1; 2; :::gg[ffac(n; 0) j n 2 f0; 1; 2; :::ggor ffac(r; r0) j r; r0 2 Rgwhich are models of the original program are not models of the completion.Of course there may still be more than one C-model for a program's completion,witness the CLP (Real) programp(X) :- p(X):The models of the completion have a very natural relationship with the �xpointsof the immediate consequence function: the C-models are exactly the �xpoints ofT CP .Lemma 5.1. Let P be a CLP (C) program. A C-interpretation I is a model of P ?i� I is a �xpoint of T CP . 2Given this relationship, it is clear that the completion of a program has a leastand greatest C-model which are the least and greatest �xpoints of T CP .De�nition 5.3. Let P be a CLP (C) program. We denote the least C-model of P ?by lm(P ?; C) and the greatest C-model of P ? by gm(P ?; C).This allows us to relate the algebraic semantics of the program completion tothe �xpoint semanticsTheorem 5.1. Let P be a CLP (C) program.� lm(P ?; C) = lfp(T CP) = T CP " ! = lm(P; C).� gm(P ?; C) = gfp(T CP). 2There is a very natural notion of failure if the semantics of a program P isregarded as the models of its completion. Namely, G should fail i� ~8: G holds inall C-models of P ?. This is symmetric with our notion of success, as can be seenfrom the following result.Theorem 5.2. Let P be a CLP (C) program and G a goal.

www.manaraa.com

34 � P ?;DC j= ~9G i� lm(P ?; C) j= ~9G.� P ?;DC j= : ~9G i� gm(P ?; C) j= : ~9G.Proof. Since lm(P ?; C) is a C-model of P ?, if P ?;DC j= ~9G then lm(P ?; C) j= ~9G.To prove the other direction, suppose lm(P ?; C) j= ~9G. Then lm(P ?; C) j=� G, forsome valuation �. For every C-model M of P ?, we have lm(P ?; C) � M , so that,by Lemma 4.2, M j=� G. Thus P ?;DC j= ~9G.The second item is proved as follows. Now P ?;DC j= : ~9G implies gm(P ?; C) j=: ~9G, as gm(P ?; C) is a C-model of P ?. Now we prove the other direction. Theproof is by contradiction. Assume that gm(P ?; C) j= : ~9G, but that for someC-model of P ?, M say, and valuation �, M j=� G. But gm(P ?; C) �M . Hence byLemma 4.2, gm(P ?; C) j=� G, a contradiction. 2Having related the previously developed logical and algebraic semantics to theClark completion, we now turn to the operational semantics.We �rst prove that the results for success given in the last section continue tohold if a program P is replaced by its completion P ?. We can then prove theoperational semantics for success is sound with respect to the program completion.This depends on the following proposition.Proposition 5.1. Let P be a CLP (C) program. Then, TC j= P ? ! P:Proof. Straightforward from the de�nition of P ?. 2Corollary 5.1. Let P be a CLP (C) program. If P; TC j= c! G thenP ?; TC j= c! G: 2Theorem 5.3. Let P be a CLP (C) program. If goal G has answer c, thenP ?; TC j= c! G:Proof. If G has answer c, then from Theorem 4.1P; TC j= c! G:From Corollary 5.1,P ?; TC j= c! G: 2The second result we need to show is that the operational semantics is completewith respect to the completion semantics. We do this by proving the converse ofCorollary 5.1.Lemma 5.2. Let P be a CLP (C) program. If P ?; TC j= c! G thenP; TC j= c! G:Proof. Let I be any model of TC. From the hypothesis, lm(P ?; I) j= c ! G.By Theorem 5.1, lm(P; I) j= c ! G. For any valuation � that satis�es c we havelm(P; I) j=� G and so, by Theorem 4.3, P; I j=� G. Since this applies to allvaluations satisfying c, P; I j= c! G. Since I was arbitrary, P; TC j= c! G. 2Theorem 5.4. Let P be a CLP (C) program. Let G be a goal and c a constraint. IfP ?; TC j= c! G then G has answers c1; : : : ; cn such thatTC j= c! (c1 _ : : :_ cn):

www.manaraa.com

35Proof. If P ?; TC j= c! G; then from Lemma 5.2, P; TC j= c! G: It follows fromTheorem 4.12 that G has answers c1; : : : ; cn such thatTC j= c! (c1 _ : : :_ cn): 25.2. SoundnessIn order to prove soundness of �nite failure we need to develop a stronger rela-tionship between a state and the states it can be reduced to. Our �rst result is ageneralization of Theorem 4.1.Lemma 5.3. Let P be a CLP (C) program. If hG ci is reducible, and using selectedliteral L may be reduced to any of the states hG1 c1i, . . . , hGm cmi thenP ?; TC j= (G ^ c)$ m_i=1 �9vars(G^c)(Gi ^ ci):Proof. Let G be of the form L1; : : : ; Ln where Li is the selected literal. Thereare four cases to consider.The �rst case is when Li is a primitive constraint and solv(c ^ Li) 6= false. Inthis case, hG ci is reducible to the single state hG0 c0iwhere G0 is L1; : : : ; Li�1; Li+1; : : : ; Lnand c0 is c ^ Li. Thus G0 ^ c0 is L1 ^ : : : ^ Li�1 ^ Li+1 ^ : : : ^ Ln ^ c ^ Li andso, P ?; TC j= (G ^ c)$ �9vars(G^c)(G0 ^ c0):The second case is when Li is a primitive constraint and solv(c ^ Li) = false.In this case, hG ci is reducible to the single state hG0 c0i where G0 is 2 and c0 isfalse. As the solver is correct with respect to the theory, this means that Li ^ cand hence G ^ c are unsatis�able in any model of TC . Thus,P ?; TC j= (G ^ c)$ �9vars(G^c)(G0 ^ c0):Otherwise Li is an atom. Let Li be of the form p(~s). The third case is whenthere are rules de�ning p in P . Let them bep(~t1) :- B1...p(~tm) :- Bm:Then hG ci can be reduced to hG1 c1i, . . . , hGm cmi where ci is c and Gi isL1; : : : ; Li�1; ~s = �i(~ti); �i(Bi); Li+1; : : : ; Lnwhere �i renames the i'th rule from the variables in the original state.Choose ~z to be distinct new variables. Because TC treats equality as identity,TC j= p(~s)$ 9~z ~s = ~z ^ p(~z): (5.1)From the de�nition of P ?, it contains the de�nition of p, which is the sentence8~x p(~x)$ (9~y1 ~x = ~t1 ^ B1) _ � � � _ (9 ~ym ~x = ~tm ^ Bm):HenceFrom (5.1),P ?; TC j= p(~s)$ 9~z ~s = ~z ^ (9~y1 ~z = ~t1 ^ B1) _ � � � _ (9 ~ym ~z = ~tm ^ Bm)):

www.manaraa.com

36 Thus, P ?; TC j= p(~s)$ m_i=1(9~z ~s = ~z ^ 9~yi ~z = ~ti ^ Bi): (5.2)and so (9~z ~s = ~z ^ 9~yi ~z = ~ti ^ Bi)$ (9~z ~s = ~z ^ 9�i(~yi) ~z = �i(~ti) ^ �i(Bi)):As �i renames away from ~s,(9~z ~s = ~z ^ 9~yi ~z = ~ti ^ Bi)$ (9�i(~yi)9~z ~s = ~z ^ ~z = �i(~ti) ^ �i(Bi)):From the fact that TC treats equality as identity,TC j= (9~z ~s = ~x ^ 9~yi ~z = ~ti ^ Bi)$ (9�i(~yi) ~s = �i(~ti) ^ �i(Bi)):Thus from (5.2),P ?; TC j= p(~s)$ m_i=1(9�i(~yi) ~s = �i(~ti) ^ �i(Bi)):Clearly, since �i renames the variables ~yi away from the variables in the originalgoal, P ?; TC j= G ^ c$ m_i=1 9�i(~yi) (L1 ^ : : :Li�1 ^ ~s = �i(~ti) ^ �i(Bi) ^ Li+1 ^ : : : ^ Lm ^ c):and from the de�nition of each Gi and ciP ?; TC j= G ^ c$ m_i=1 9�i(~yi) Gi ^ ci:Hence,P ?; TC j= (G ^ c)$ n_i=1 �9vars(G^c) (Gi ^ ci):The fourth case is when there are no rules in P de�ning p. This means that Li andhence G ^ c are unsatis�able in any model of P ?. In this case, hG ci is reducibleto the single state hG0 c0i where G0 is 2 and c0 is false. Thus,P ?; TC j= (G ^ c)$ �9vars(G^c)(G0 ^ c0): 2Now we are in a position to relate the answers of �nitely evaluable goals to thelogical semantics. A goal is �nitely evaluable if it has a �nite derivation tree.Theorem 5.5. Let TC be a theory for constraint domain C and P be a CLP (C)program. Let G be a goal which is �nitely evaluable with answers c1; : : : ; cn.ThenP ?; TC j= G$ (c1 _ : : :_ cn):Proof. The proof is by induction on the partial derivation trees1 T1,. . .Tkconstructed from G where Tk is the �nal derivation tree. The induction hypothesis1Partial derivation trees are a generalization of derivation trees in which nodes that canreduce may have no children. A partial derivation tree represents an as yet incomplete search ofa derivation tree.

www.manaraa.com

37is that at stage i, if the leaves of Ti are the states hG1 c1i, . . . , hGm cmi, thenP ?; TC j= G$ m_i=1 �9vars(G)(Gi ^ ci):The base case, when i = 1 is obvious as T1 is just hG truei and clearlyP ?; TC j= G$ �9vars(G)(G ^ true):We now prove the induction step. Assume that the induction hypothesis holds forTi where i < k. We shall show that it holds for Ti+1. Let the leaves of Ti behG1 c1i, . . . , hGm cmi. By induction hypothesis,P ?; TC j= G$ m_i=1 �9vars(G)(Gi ^ ci): (5.3)Now Ti+1 is constructed from Ti by choosing a leaf state, say hGj cji and addingas children the states, hG01 c01i, . . . , hG0m0 c0m0i which hGj cji can be reduced tousing the selected literal. By construction, therefore, the leaves of Ti+1 arehG1 c1i; � � � ; hGj�1 cj�1ihG01 c01i; � � � ; hG0m0 c0m0 ihGj+1 cj+1i; � � � ; hGm cmi:From Lemma 5.3, we have thatP ?; TC j= (Gj ^ cj)$ m0_i=1 �9vars(Gj^cj)(G0i ^ c0i):Thus from (5.3),P ?; TC j= G$ (m_i=1;i6=j �9vars(G)(Gi ^ ci)) _ �9vars(G)(m0_i=1 �9vars(Gj^cj)(G0i ^ c0i)):As the variables introduced in the reduction are disjoint from those in G,P ?; TC j= G$ (m_i=1;i6=j �9vars(G)(Gi ^ ci)) _ (m0_i=1 �9vars(G)(G0i ^ c0i)):Thus the induction hypothesis holds for Ti+1.By induction we therefore have that for the leaves, hG1 c1i, . . . , hGp cpi of Tk,P ?; TC j= G$ p_i=1 �9vars(G)(Gi ^ ci):As Tk is the �nal derivation tree, each Gi is the empty goal. Thus,P ?; TC j= G$ p_i=1 �9vars(G)ci:Now the answers to G are exactly those constraints �9vars(G)ci which are not false.Thus the result follows. 2An immediate corollary to this is logical soundness of �nite failure, as this is thespecial case when there are no answers and W; is just false.Corollary 5.2. (Logical Soundness of Finite Failure)Let TC be a theory for constraint domain C and let P be a CLP (C) program. If

www.manaraa.com

38 goal G �nitely fails then P ?; TC j= : ~9G: 2Soundness of �nite failure for the algebraic semantics is an immediate conse-quence of the soundness of �nite failure for the logical semantics, as any intendedinterpretation of the constraint domain is a model of the constraint theory.Theorem 5.6. (Algebraic Soundness of Finite Failure)Let P be a CLP (C) program. If goal G �nitely fails then:� P ?;DC j= : ~9G, and� gm(P ?; C) j= : ~9G: 25.3. Logical completenessProving completeness of �nite failure is more problematic. We begin by investigat-ing completeness with respect to the logical semantics. The �rst reason is that thesolver can be incomplete, and so not detect that a derivation is failed with respectto the theory. For example, a solver which delays non-linears will not determinethat the goal sqr(X;�1) with the CLP (Real) programsqr(X;X �X):should fail. For this reason we require the solver to be theory-completeThe second restriction concerns fairness of the literal selection rule|as we haveseen selection rules which are not fair may turn failed derivations into in�nitederivations.Example 5.3. Consider the programq :- p; 1 = 2:p :- p:Clearly gm(P ?; C) j= : ~9q, but the goal q will not �nitely fail with a left-to-rightselection rule.The example above shows that for completeness we require a scheduling strategywhich is fair.As long as the solver is theory complete and the literal selection strategy is fair,completeness of �nite failure holds .Theorem 5.7. (Logical Completeness of Finite Failure)Let TC be a theory for constraint domain C, let P be a CLP (C) program, andlet G be a goal. IfP ?; TC j= : ~9Gthen G �nitely fails for any fair selection rule, provided the solver used is theorycomplete.Proof. The proof is rather complex. We prove the contrapositive: if G does not�nitely fail for a fair selection rule then the goal is satis�able in some model of TC

www.manaraa.com

39and P ?. Clearly this is true if G has a successful derivation. The case of interest iswhen G has an in�nite fair derivationhG0 c0i) hG1 c1i) hG2 c2i) � � �The key idea is to build a non-standard model of TC and P ? which makes eachstate in the derivation true. This provides a model of P ?; TC in whichG is satis�able.First consider the sequence c0, c1, . . . of constraints. Let c be V1i=0 ci. Asthe solver is theory complete we know that for each ci, TC 6j= : ~9ci. From theCompactness Theorem, therefore, TC 6j= : ~9c. Thus there is a model I of TC and avaluation � such thatI j=� c:The next step is to build an I-model of P ?. Let M 0 be the I-interpretation,f�(A)j atom A is in goal Gi for some igwhere � is arbitrarily extended to all variables in the derivation.Now M 0 is a post-�xpoint of T IP . This is because, for each �(A) 2 M 0, as thederivation is fair, and so A must have been selected, there is an instance of a rulein P of form�(A) :- �(L1); : : : ; �(Ln)such that each �(Lj) appears in the derivation. If Lj is an atom, then by de�nitionof M 0, �(Lj) 2 M 0. If Lj is a primitive constraint, then as the derivation is fair,the renaming of the constraint in the derivation corresponding to Lj will havebeen selected and placed in the constraint ck for some k. Thus, I j=� Lj . Hence,M 0 � T IP (M 0).By a standard construction, it follows that there is a �xpoint M of T IP such thatM 0 � M . From Lemma 5.1, M is a model of P ?. By construction, for each Gi,M j=� Gi and so M j= ~9G: 25.4. Algebraic completenessAlgebraic completeness of �nite failure is the most di�cult result to achieve. Clearlywe require the solver to agree with the the domain of computation, on the satis�-ability of constraints, that is it must be complete. Note that completeness of thesolver implies that the constraint theory is strong enough to determine if everyconstraint is satis�able or not, as the solver must agree with the theory. Hence theconstraint theory must also be satisfaction complete.We might expect that for completeness to hold for the algebraic semantics allwe need is a complete solver and a fair computation rule. This not true, we requiremore.Example 5.4. Consider the CLP (Term) program Pq(a) :- p(X)p(f(X)) :- p(X)P ? is 8Y (p(Y)$ 9X (Y = f(X) ^ p(X))) ^ 8Y (q(Y)$ 9X (Y = a ^ p(X))):Now the only Term-model of P ? is ; but the atom q(a) does not �nitely fail with

www.manaraa.com

40 a complete solver for any selection rule.Intuitively, the reason for the problem is that the atoms in T CP # ! n gfp(T CP) aretrue in some model, but not true in a C-model.Example 5.5. Consider the CLP (Term) program P de�ned above. We can de�ne apre-interpretation I as follows, that is a model of TTerm. Let the domain of I be theHerbrand terms a; f(a); f(f(a)); : : : as well as the integers. Interpret the functionsa and f as follows: aI = a, fI(t) = f(t) when t is Herbrand, and fI (t) = t+1 whent is an integer. Now I j= TTerm and fq(a)g [fp(z) j z 2 Zg is an I-model of P ? inwhich q(a) holds.The problem is that the greatest model of the completion may not be T CP # !.We can only hope for equality in the case that the greatest model is T CP # !.De�nition 5.4. A CLP (C) program P is canonical if T CP # ! = gfp(T CP).Fortunately, for a large class of constraint domains, including all those of practi-cal interest, every program has an equivalent canonical program (where by equiv-alent we mean a program with the same success and �nite failure behavior as theoriginal, on queries with predicates only from the original program). See [14, 23] forconstructions of equivalent canonical programs for the constraint domain Term.Before we show that this condition is su�cient to achieve completeness for thealgebraic semantics, we require a number of technical lemmas to relate the ordinalpowers of T CP and breadth-�rst derivations.De�nition 5.5. A breadth-�rst derivation D from state s is compatible with avaluation � if for each state hG ci in D, DC j=� �9vars(s)c.Note that a failed BF-derivation is not compatible with any valuation.The following lemma corresponds to the Lifting Lemma [17] but we are onlyinterested in the case of BF-derivations.Lemma 5.4. If goal G has a successful or in�nite breadth-�rst derivation compatiblewith valuation � and � is a solution of constraint c, then hG ci has a successfulor in�nite breadth-�rst derivation compatible with �.Proof. Let G have the breadth-�rst derivation D,hG truei)BF hG1 c1i)BF � � �)BF hGi cii)BF � � � ;which is compatible with �. We can assume that the variables introduced in thederivation are disjoint from the variables in c. Now consider the sequence of states,D0, hG ci)BF hG1 c ^ c1i)BF � � �)BF hGi c ^ cii)BF � � �We claim that this is a breadth-�rst derivation from hG ci. The only reason thatit may not be a valid derivation is that for some state in the derivation, hGi c ^ ciiwe have that ci is unsatis�able in the constraint theory. Now, as D is compatible

www.manaraa.com

41with � and � is a solution of c, we haveDC j=� c ^ �9vars(G)ci:As the introduced variables in D are distinct from c, vars(G) � vars(c)\ vars(ci),and soDC j=� �9vars(G)[vars(c)(c ^ ci):Hence c ^ ci is satis�able in the constraint theory. It also follows that D0 iscompatible with �. 2The following two lemmas relate the breadth-�rst derivations of goals to thebreadth-�rst derivations from their component literals. These lemmas are one ofthe chief reasons why we introduce breadth-�rst derivations, as the lemmas do nothold for ordinary derivations.Lemma 5.5. Let � be a valuation on the common variables of literals L1 and L2. Ifthere is a breadth-�rst derivation D1 from literal L1 and a breadth-�rst derivationD2 from literal L2 such that D1 and D2 are compatible with valuation �, thenthere is a breadth-�rst derivation D3 from goal L1; L2 such that:1. D3 is compatible with �.2. If D1 and D2 are successful then so is D3.3. The length of D3 is the maximum of the lengths of D1 and D2.Proof. Let D1 be the derivationhL1 truei)BF hG1 c1i)BF � � �)BF hGi cii)BF � � �and D2 be the derivationhL2 truei)BF hG01 c01i)BF � � �)BF hG0i c0ii)BF � � �We can assume that the variables introduced in D1 are disjoint from the variablesin D2 and vice versa. Let D3 behL1; L2 truei)BF hG1; G01 c1 ^ c01i)BF � � �)BF hGi; G0i ci ^ c0ii)BF � � �It is straightforward to verify that D3 is a valid breadth-�rst derivation from L1; L2which satis�es the conditions of the lemma. 2Similarly we can prove that:Lemma 5.6. If there is a breadth-�rst derivation D3 from goal L1; L2, then thereis a breadth-�rst derivation D1 from literal L1 and a breadth-�rst derivation D2from literal L2 such that:1. If D3 is compatible with valuation � then so are D1 and D2.2. If D3 is successful then so are D1 and D2.3. The length of D3 is the maximum of the lengths of D1 and D2. 2Now we are able to relate the ordinal powers of TP to breadth-�rst derivations.This result is the key for relating T CP to �nitely failed derivations, and correspondsto Lloyd's Proposition 13.5 ([17]).

www.manaraa.com

42 Lemma 5.7. �(A) 2 T CP # i i� using a complete solver A has a breadth-�rst deriva-tion which is compatible with � and which is successful with length < i or elsehas length i.Proof. The proof is by induction on i. The base case is when i = 0. This holdsbecause �(A) 2 T CP # 0 for all A and �, and every atom A has the breadth-�rstderivation of length 0 consisting of the initial state hA truei which is compatiblewith every valuation.We now prove the inductive step. The induction hypothesis is that �(A) 2 T CP # ii� using a complete solver A has a breadth-�rst derivation which is compatible with� and which is successful with length < i or else has length i. We will prove that�(A) 2 T CP # i+1 i� using a complete solver A has a breadth-�rst derivation whichis compatible with � and which is successful with length � i or else has length i+1.Consider �(A) 2 T CP # i + 1. Assume A is of form p(~s). From the de�nition ofordinal powers and the immediate consequence function, for some rulep(~t) :- L1; : : : ; Lnin P and valuation �0 we have that �(A) = �0(p(~t)) and thatDC ; T CP # i j=�0 L1 ^ � � � ^ Ln:We can assume that the variables in the rule are disjoint from the variables in A.We �rst prove that each Lj has a breadth-�rst derivation compatible with �0. IfLj is a primitive constraint, DC j=�0 Lj . Thus Lj has the successful breadth-�rstderivationhLj truei)BF h2 Ljiwhich is compatible with �0 and of length 1. If Lj is an atom, then �0(Lj) 2 T CP # i.From the induction hypothesis Lj has a breadth-�rst derivation which is compatiblewith �0 and which is successful with length < i or else has length i. Thus fromLemma 5.5, the state hL1; : : : ; Ln truei has a breadth-�rst derivation which iscompatible with �0 and which is successful with length < i or else has length i.Let �00 be the valuation de�ned by�00(x) = ��(x) when x 2 vars(A)�0(x) otherwise.It follows that h~s = ~t; L1; : : : ; Ln truei has a breadth-�rst derivation which iscompatible with �00 and which is successful with length < i or else has length i.Thus hA truei has a breadth-�rst derivation which is compatible with �00 andwhich is successful with length < i + 1 or else has length i + 1. As �00 and � areidentical over the variables in A, this derivation is also compatible with �. Thuswe have proved one direction of the required statement. The other direction issimple reversal of the above argument except that we use Lemma 5.6 instead ofLemma 5.5. 2Theorem 5.8. (Algebraic Completeness of Finite Failure)Let P be a canonical CLP (C) program, and let G be a ground goal. IfP ?;DC j= : ~9Gthen G �nitely fails for any fair selection rule, provided a complete solver is used.Proof. We prove the contrapositive. We �rst prove it for the case G is an

www.manaraa.com

43atom. Assume that G does not �nitely fail. Then G has a successful derivation oran in�nite fair derivation. Then G has a successful breadth-�rst derivation or anin�nite breadth-�rst derivation, DBF say. As G is ground, DBF is compatible withany valuation, say �. From Lemma 5.7, it follows that for all i, �(G) 2 T CP # i andso �(G) 2 T CP # !. As P is canonical, �(G) 2 gfp(T CP), and so �(G) 2 gm(P ?; C).Thus, P ?;DC j= : ~9Gdoes not hold. The case when G is a conjunction of literals follows a similar argu-ment but uses Lemma 5.6. 2The restriction to canonical programs is not too severe, as almost all programs inpractice are canonical. Notice that the completeness result provided by Theorem 5.7was stronger in the sense that it did not require programs to be canonical or thegoal to be ground.Finally we consider the relationship of the logical and algebraic semantics to the\�nite failure set" which is the analogue of the success set.De�nition 5.6. The �nite failure set of a program P , FFP , is the set of factsfA :- c j hA ci �nitely fails for P via some selection ruleg:The relationship to the logical semantics is a straightforward corollary of Theo-rem 5.7.Corollary 5.3. Let P be a CLP (C) program, let A be an atom, and c a constraint.Then A :- c 2 FFP i� P ?; TC j= : ~9(A ^ c): 2We now examine the relationship of the �nite failure set with the algebraicsemantics.Theorem 5.9. Let P be a CLP (C) program. Then[FFP]C � C-baseP n T CP # !:Proof. The proof is by contradiction. Assume that �(A) 2 T CP # ! and that�(A) 2 [FFP]C. Now �(A) 2 T CP # !, implies that for all i, �(A) 2 T CP # i. FromLemma 5.7, either A has a successful breadth-�rst derivation which is compatiblewith � or else A has breadth-�rst derivations of unbounded length which are com-patible with �. Thus, from Koenig's LemmaA either has a successful or an in�nitebreadth-�rst derivation which is compatible with �. Now consider any c such thatC j=� c. Then from Lemma 5.4, hA ci has a successful or an in�nite breadth-�rstderivation which is compatible with �. Thus hA ci cannot �nitely fail for anyliteral selection strategy. Thus �(A) 62 [FFP]C. 2Unfortunately the reverse inclusion does not hold in general. The most obviousreason is that the solver may not be complete, and so it will \incorrectly" notterminate a failing derivation. However, even if the solver is complete, there maystill be an expressiveness problem. The problem is that the constraint domain maynot allow the constraints in the fact to \cover" some of the elements.Example 5.6. Let Real? be the constraint domain with linear arithmetic equali-ties and the unary constraint 6= � as the only primitive constraints and the usual

www.manaraa.com

44 functions and constants. Now consider the programp(X) :- X 6= �:Here C-baseP n T CP # ! = fp(�)g, but there is no constraint c and atom A withpredicate symbol p such that the state hA ci �nitely fails for this program.To overcome this problem we require a technical restriction on the constraintdomain.De�nition 5.7. The constraint domain C is solution compact if for all constraintsc, there is a possibly in�nite set of constraints C such thatDC j= ~8(: c$_C):All constraint domains occurring in practice are solution compact. Of courseReal? from Example 5.6 is not, but clearly that domain was a contrived and patho-logical case. The original de�nitions of solution compactness [7, 8] included a furthercondition that was later shown to be unnecessary [18].Theorem 5.10. Let P be a CLP (C) program. If C is solution compact and solvC isa complete solver then[FFP]C = C-baseP n T CP # !:Proof. From Theorem 5.9,[FFP]C � C-baseP n T CP # !:We now prove the reverse inclusion. Let �(A) 2 C-baseP n T CP # !. Thus forsome i, �(A) 62 T CP # i. Let D1, . . . , Dn be the successful breadth-�rst derivationsfrom A of length less than i and the breadth-�rst derivations from A of lengthi. From Lemma 5.7, no Dj will be compatible with �. For each Dj , let cj bethe constraint in the last state. It follows that for each cj, � is not a solutionof �9vars(A)cj. As the constraint domain is solution compact, there is a constraintc0j such that c0j ^ �9vars(A)cj is unsatis�able but � is a solution of c0j. Let c beVnj=1 c0j . By construction � is a solution of c. It follows that hA ci cannot have asuccessful breadth-�rst derivation or in�nite breadth-�rst derivation, as otherwisefrom Lemma 5.4, A would have a successful breadth-�rst derivation or in�nitebreadth-�rst derivation compatible with �. Thus hA ci �nitely fails for any fairliteral selection rule and so �(A) 2 [FFP]C. 2By combining the above theorem with the de�nition of canonical program andTheorem 5.1, we have the following result.Theorem 5.11. Let C be a solution compact constraint domain and P be a canon-ical CLP (C) program. If P is evaluated with a complete solver then [FFP]C =C-baseP n gm(P ?; C). 2One should not read too much into Theorem 5.11. It does not guarantee thatan atom (or goal) will �nitely fail if the atom does not hold in any C-model of thecompletion, even if the conditions of solution compactness, canonicity and solver

www.manaraa.com

45completeness are met.Example 5.7. Let P be the CLP (Term) programp(f(X)) :- p(X):P ? is 8Y (p(Y)$ 9X(Y = f(X)^p(X))): The program is canonical with T CP # ! =gfp(T CP) = ;. Thus the program completion has the single Term-model ;. Thus: 9Xp(X) holds in all Term-models of P ?. However, even with a complete solverthe goal p(X) will not �nitely fail.6. CONCLUSIONConstraint logic programs are a generalization of logic programs which are param-eterized by the choice of the underling constraint domain. Constraints from theconstraint domain can be understood in three complementary ways: operationallyby means of a (possibly incomplete) constraint solver; logically by way of the con-straint theory; and algebraically, by means of the domain of computation whichis the constraint's intended interpretation. These three views are required to becoherent, that is, the domain of computation must model the constraint theory,while the constraint theory must agree with the constraint solver.We have lifted these three semantics from the constraint domain to give op-erational, logical and algebraic semantics for constraint logic programs. As forthe constraint domain, the semantics form a hierarchy: the operational seman-tics is the least strong, then the logical semantics, while the algebraic semantics isthe strongest semantics. To prove correctness of the semantics we have employedbreadth-�rst derivations and two �xpoint semantics so as to bridge the gap betweenthe algebraic and the operational semantics.In the case of a successful query each of the semantics agree on what is suc-cessful, although, if the solver is incomplete, the operational semantics may havesuccessful derivations which are not satis�able, producing pseudo-answers that donot correspond to a true success.Accord between the three semantics for goals which �nitely fail is somewhat moredi�cult to obtain and requires the constraint solver to be more powerful. For theoperational semantics to agree with the logical semantics the solver must be theory-complete, and for the operational semantics to agree with the algebraic semanticswe need the solver to be complete and a number of other technical conditions to besatis�ed.The diagram shown in Figure 6.1 summaries the relationships between the opera-tional, algebraic and �xpoint semantics in the case. Each semantics is characterizedby a subset of C-baseP . The diagram shows the containment relationships betweenthese sets and below the diagram gives conditions which imply where containmentis actually equality.It is instructive to relate our results back to the semantic framework developedfor logic programs. Pure logic programs can be viewed as an instance of the CLPScheme based on the Term constraint domain in which constraints are equationsover terms. In the Term constraint domain uni�cation is the constraint solving

www.manaraa.com

46
P is canonical

C-baseP[FFP]Clm(P; C) = lfp(T CP) = [SSP]CT CP # !gfp(T CP)
C is solution compact, solvC is completeFIGURE 6.1. Relationship between subsets of C-basePmechanism, the Herbrand universe is the computation domain and the axioms forfree equality [2] form the constraint theory. Since the constraint solver is complete,the computation domain is solution compact and independence of constraints holds,we can use our generic results for CLP to immediately obtain the standard semantictheory of logic programs. Thus the semantic theory for CLP strictly generalizesthat for logic programs, yet in many cases the statement of results is simpler andproofs are more direct than those standard for logic programming, largely becausethe vagaries of uni�cation, substitutions and local variables can be factored out.We thank Jean-Louis Lassez for his comments and discussions, over the years, onthe topic of this paper This work was supported by Australian Research Council grantsA49702580 and A49700519.REFERENCES1. K. R. Apt and M. H. van Emden. Contributions to the theory of logic programming.Journal of the ACM, 29(3):841{862, 1982.2. K. L. Clark. Negation as failure. In Logic and Databases (H. Gallaire and J. MinkerEds.). Plenum Press, New York, 293{322, 1978.3. A. Colmerauer. Prolog-II Manuel de Reference at Modele Theorique. Groupe In-telligence Arti�celle, Universite d'Aix-Marseille II, 1982.4. M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as aprogramming language. Journal of the ACM, 23(4):733{742, 1976.

www.manaraa.com

475. M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative modeling of theoperational behavior of logic languages. Theoretical Computer Science 69(3):289{318, 1989.6. M. Gabbrielli and G. Levi, Modeling answer constraints in constraint logic pro-grams, Proc. 8th International Conference on Logic Programming, 238{252, 1991.7. J. Ja�ar and J-L. Lassez, Constraint logic programming, Technical Report 86/73,Department of Computer Science, Monash University, 1986.8. J. Ja�ar and J.-L. Lassez. Constraint logic programming. In Proc. Fourteenth Ann.ACM Symp. Principles of Programming Languages, pages 111{119, 1987.9. J. Ja�ar, J.-L. Lassez and J.W. Lloyd. Completeness of the Negation as FailureRule. Proc. IJCAI-83, 500{506, 1983.10. J. Ja�ar, J.-L. Lassez and M.J. Maher. A theory of complete logic programs withequality. The Journal of Logic Programming 3:211{223, 1984.11. J. Ja�ar and M. Maher. Constraint logic programming: A survey. Journal of LogicProgramming, 19&20, 503{581, 1994.12. J. Ja�ar, S. Michaylov, P. Stuckey & R. Yap, The CLP (R) language and system,ACM Transactions on Programming Languages, 14(3), 339{395, 1992.13. J. Ja�ar and P. Stuckey, Semantics of in�nite tree logic programming. TheoreticalComputer Science 46:141{158, 1986.14. J. Ja�ar and P. Stuckey, Canonical logic programs, Journal of Logic Programming3, 143{155, 1986.15. A. Tarski. A lattice-theoretical �xpoint theorem and its applications. Paci�c Jour-nal of Mathematics, 5, 285{309, 1955.16. J-L. Lassez and M.J. Maher, Closures and Fairness in the Semantics of Program-ming Logic, Theoretical Computer Science 29 (1984) 167{184.17. J.W. Lloyd, Foundations of Logic Programming, Springer-Verlag, Second Edition,1987.18. M. Maher. Logic semantics for a class of committed-choice programs. In Proc.Fourth Int. Conf. on Logic Programming, pages 858{876, The MIT Press, 1987.19. A. Mal'cev, Axiomatizable Classes of Locally Free Algebras of Various Types, in:The Metamathematics of Algebraic Systems: Collected Papers, 1936{1967, Chapter23, 262{281, 1971.20. K. Marriott and P. Stuckey. Programming with Constraints: An Introduction, MITPress, 1998.21. E. Mendelson. Introduction to Mathematical Logic, Wadsworth and Brooks, ThirdEdition, 1987.22. J.R. Shoen�eld, Mathematical Logic, Addison-Wesley, 1967.23. M. Wallace, A computable semantics for general logic programs, Journal of LogicProgramming 6, 269{297, 1989.24. D.A. Wolfram, M.J. Maher and J.-L. Lassez. A uni�ed treatment of resolutionstrategies for logic programs. Proc. Second Int. Conf. on Logic Programming, Up-psala, 263{276, 1984.

