J. LOGIC PROGRAMMING 1994:19, 20:1-679 1

THE SEMANTICS OF CONSTRAINT LOGIC
PROGRAMS

JOXAN JAFFAR, MICHAEL MAHER, KIM MARRIOTT
AND PETER STUCKEY

>

The Constraint Logic Programming (CLP) Scheme was introduced by
Jaffar and Lassez. The scheme gave a formal framework, based on con-
straints, for the basic operational, logical and algebraic semantics of an
extended class of logic programs. This paper presents for the first time
the semantic foundations of CLP in a self-contained and complete package.
The main contributions are threefold. First, we extend the original con-
ference paper by presenting definitions and basic semantic constructs from
first principles; giving new and complete proofs for the main lemmas. Im-
portantly, we clarify which theorems depend on conditions such as solution
compactness, satisfaction completeness and independence of constraints.
Second, we generalize the original results to allow for incompleteness of the
constraint solver. This is important since almost all CLP systems use an
incomplete solver. Third, we give conditions on the (possibly incomplete)
solver which ensure that the operational semantics is confluent, that is, has
independence of literal scheduling. <

1. INTRODUCTION

The Constraint Logic Programming (CLP) Scheme was introduced by Jaffar and
Lassez [8]. The scheme gave a formal framework, based on constraints, for the
basic operational, logical and algebraic semantics of an extended class of logic pro-
grams. This framework extended traditional logic programming in a natural way

Address correspondence to Joxan Jaffar, Department of Information Systems and Computer
Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 Email:
joxan@iscs.nus.edu.sg
Michael Maher, School of Computing and Information Technology, Griffith University, Nathan,
Queensland 4111, Australia. Email: m.maher@cit.gu.edu.au
Kim Marriott, Department of Computer Science, Monash University, Clayton Vic. 3168,
Australia. Email: marriott@cs.monash.edu.au
Peter Stuckey, Department of Computer Science, University of Melbourne, Parkville 3052,

Apstrelizy el RIERE S BY P B A cRAMMING

© Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0743-1066/94/$7.00

www.manaraa.com

by generalizing the term equations of logic programming to constraints from any
pre-defined computation domain. Different classes of constraints give rise to differ-
ent programming languages with different areas of application. Since then there has
been considerable interest in the semantics and implementation of CLP languages,
in part because they have proven remarkably useful, for systems modeling and for
solving complex combinatorial optimization problems [11, 20].

CLP languages have a rich semantic theory which generalizes earlier research
into semantics for logic programs. In the context of logic programs, van Emden
and Kowalski [4] gave a simple and elegant fixpoint and model theoretic semantics
for definite clause logic programs based on the least Herbrand model of a program.
Apt and van Emden [1] extended this work to establish the soundness and com-
pleteness of the operational semantics (SLD resolution) with respect to success and
to characterize finite failure. Clark [2] introduced the program completion as a log-
ical semantics for finite failure and proved soundness of the operational semantics
with respect to the completion. Jaffar et al [9] proved completeness of the opera-
tional semantics with respect to the completion. Together these results provide an
elegant algebraic, fixpoint and logical semantics for pure logic programs. The book
of Lloyd [17] provides a detailed introduction to the semantics of logic programs.

One natural generalization of logic programs is to allow different unification
mechanisms in the operational semantics. Such a generalization was welcomed since
it promised the integration of the functional and logical programming paradigms.
Jaffar et al [10] generalized the theory of pure logic programs to a logic programming
scheme which was parametric in the underlying equality theory, and proved that
the main semantic results continued to hold. However, the theory of logic programs
with equality was still not powerful enough to handle logic languages which provided
more than equations. In particular, Prolog II [3] provided inequations over the
rational trees. Jaffar and Stuckey [13] showed that the standard semantic results
still held for Prolog II in the presence of inequations. The CLP Scheme generalized
these two strands of work to provide a scheme over arbitrary constraints which
could be equations, inequations or whatever. Somewhat surprisingly, the key results
for the logic programming semantics continue to hold in this much more general
setting. Indeed, as we shall show, presenting the standard logic programming results
in terms of CLP actually results in a more direct and elegant formalization and
provides deeper insight into why the results hold for logic programming.

This paper presents for the first time the semantic foundations of CLP in a
self-contained and complete package. The original presentation of the CLP scheme
was in the form of an extended abstract [8], referring much of the technical details,
including all formal proofs, to an unpublished report [7]. The conference paper of
Maher [18] provided a stronger completeness result. Subsequent papers on CLP
semantics have either been partial in the sense that they focus on certain aspects
only, or they have been informal, being part of a tutorial or survey. Indeed, Jaffar
and Maher’s comprehensive survey of CLP [11] did not present the semantics in
a formal way, nor include any important proofs. The main contributions of the
present paper are:

e We extend the original conference papers by presenting definitions and basic
semantic constructs from first principles, with motivating discussions and
examples, and give new and complete proofs for the main lemmas. Im-
portantly, we clarify which theorems depend on conditions such as solution

www.manaraa.com

compactness, satisfaction completeness and independence of constraints.

e We generalize the original results to allow for incompleteness of the con-
straint solver. This is important since almost all CLP systems use an in-
complete solver.

o We give conditions on the (possibly incomplete) solver which ensure that
the operational semantics is confluent, that is, has independence of literal
scheduling.

A synopsis is as follows. In the next section we introduce the notions of con-
straints, solvers and constraint domains. In Section 3 the operational semantics of
CLP is introduced, together with breadth-first derivations. In Section 4, soundness
and completeness results for successful derivations are derived. Also, two fixpoint
semantics are introduced. In Section 5 we give soundness and completeness results
for finite failure. Section 6 summarizes our main results and relates them to the
standard results for logic programming.

2. CONSTRAINTS

We assume that the reader is familiar with the basics of first-order logic. See for
example [22]. We use the notation § to denote a sequence of terms or variables

S51,...,5,. In an abuse of notation we shall often write § = ¢, where § and ¢ are
vectors of length n, to denote the sequence (or conjunction) of equations s; =
tl,...,Sn :tn.

We let 37 F | where & is a vector of variables, denote the logical formula 3x; 32 - - - 2,
Similarly we let 3y F' denote the logical formula d¢13xs - - - Iz, F' where variable
set W = {x1,...,2,}, and we let Iy F denote the restriction of the logical formula
F to the variables in W. That is, I F is Jvars(r)\w I, where the function vars
takes a syntactic object and returns the set of free variables occurring in it. We let
JF denote the existential closure of F and VF denote the universal closure of F'.

A renaming is a bijective mapping between variables. We naturally extend re-
namings to mappings between logical formulas, rules, and constraints. Syntactic
objects s and s’ are said to be variants if there is a renaming p such that p(s) = s’

A signature defines a set of function and predicate symbols and associates an
arity with each symbol. A Y-structure, D, is an interpretation of the symbols in
the signature 3. It consists of a set D and a mapping from the symbols in X
to relations and functions over D which respects the arities of the symbols. A
first-order X-formula is a first order logical formula built from variables and the
function and predicate symbols in X in the usual way using the logical connectives
A, V, =, — and the quantifiers 3 and V. A X-theory is a possibly infinite set of
closed ¥-formulas. A solver for a set £ of X-formulas is a function which maps each
formula to one of true, false or unknown, indicating that the formula is satisfiable,
unsatisfiable or it cannot tell.

CLP languages extend logic-based programming languages by allowing con-
straints with a pre-defined interpretation. The key insight of the CLP scheme
is that for these languages the operational semantics, declarative semantics and the
relationship between them can be parameterized by a choice of constraints, solver
and an algebraic and logical semantics for the constraints.

www.manaraa.com

More precisely, the scheme defines a class of languages, CLP(C), which are para-
metric in the constraint domain C. The constraint domain contains the following
components:

e the constraint domain signature, Yc;

e the class of constraints, Lc, which is some predefined subset of first-order
Y.-formulas;

e the domain of computation, D¢, which is a X-structure that is the intended
interpretation of the constraints;

e the constraint theory, Tc, which is a X-theory that describes the logical
semantics of the constraints; and

e the solver, solvc, which is a solver for L¢.

We assume that:

”

e The binary predicate symbol “=" is in X¢, that = is interpreted as identity
in D¢ and that 7¢ contains the standard equality axioms for =.

e The class of constraints £¢ contains, among other formulas, all atoms con-
structed from =, the always satisfiable constraint ¢rue and the unsatisfiable
constraint false and is closed under variable renaming, existential quantifi-
cation and conjunction.

e The solver does not take variable names into account, that is, for all renam-
ings p, solve(c) = solve (p(c)).

e The domain of computation, solver and constraint theory agree in the sense
that D¢ 1s a model~0f Te and that for any constraint c € Le, if solve(c) =
false then T¢ |= = Je, and if solve(¢) = true then 7¢ = Je.

For a particular constraint domain C, we call an element of L¢ a constraint and
an atomic constraint is called a primitive constraint.
In this paper we will make use of the following two example constraint domains.

Ezample 2.1. The constraint domain Real which has < > < > = as the relation
symbols, function symbols +, —, * and /, and sequences of digits with an optional
decimal point as constant symbols. The intended interpretation of Real has as its
domain the set of real numbers, R. The primitive constraints <, > <, >, = are
interpreted as the obvious arithmetic relations over R, and the function symbols
+, —, * and /, are the obvious arithmetic functions over R. Constant symbols are
interpreted as the decimal representation of elements of R. The theory of the real
closed fields is a theory for Real [22]. A possible implementation of a solver for Real
is based on that of CLP(R) [12]. Tt uses the Simplex algorithm and Gauss-Jordan
elimination to handle linear constraints and delays non-linear constraints until they
become linear.

Ezxample 2.2. The constraint domain T'erm has = as the primitive constraint, and
strings of alphanumeric characters as function symbols or as constant symbols.
CLP(Term) is, of course, the core of the programming language Prolog.

www.manaraa.com

The intended interpretation of T'erm is the set of finite trees, T'ree. The interpre-
tation of a constant a is a tree with a single node labeled with a. The interpretation
of the n-ary function symbol f is the function fp,.. : Tree” — Tree which maps
the trees Ti,...,T, to a new tree with root node labeled by f and with 17,...,T,
as children. The interpretation of = is the identity relation over Tree. The natural
theory, Trerm, was introduced in logic programming by Clark [2] (see also [19]) in
which “=" is required to be syntactic equality on trees. The unification algorithm
is a constraint solver for this domain.

Note that if the solver returns unknown this means the solver cannot determine
satisfiability; it does not mean that the constraint theory does not imply satisfiabil-
ity or unsatisfiability of the constraint. Thus the solver is allowed to be incomplete.
Because of the agreement requirement, a solver for constraint domain C can only
be as powerful as the constraint domain theory 7¢. A solver with this property is
theory complete. That is a, a solver is theory complete whenever

o solve(c) = false iff T |E - Je, and
o solve(c) = true iff T¢ = Je.

If the solver only ever returns frue or false it is said to be complete. If the solver
for constraint domain C is complete then we must have that the constraint theory
Te is satisfaction complete [8], that is, for every constraint ¢, either 7¢ = - Je or
T | e

It is important to note that a theory for a constraint domain may have models
which are very different to the intended model. If the solver is not complete, then
constraints which are false in the domain of computation D¢ may be true in these
models. If the solver is complete then all models must agree about whether a
constraint is satisfiable or not. We call a model which is not the intended model a
non-standard model.

Ezample 2.3. A well-known non-standard model of the real closed field (due to
Abraham Robinson, see e.g. [21]) is the model R* which contains (1) “infinites-
imals” which are not zero but smaller than every non-zero real number and (2)
“infinite elements” which are larger than every real number.

Note that from the above definition we can easily define a constraint domain
C given a signature X¢, language of constraints L¢ and a solver solve and either
a domain of computation or a constraint theory that agrees with solve. Given a
domain of computation D¢, then a suitable constraint theory 7¢ is just the theory
of D¢, that is all first order formulae true in D¢. Alternatively given a constraint
theory T¢ we can take D¢ to be an arbitrary model of the theory.

A constraint domain provides three different semantics for the constraints: an
operational semantics given by the solver, an algebraic semantics given by the in-
tended interpretation, and a logical semantics given by the theory. One of the nicest
properties of the CLP languages 1s that it 1s possible to also give an operational,
algebraic and logical semantics to the user defined predicates, that is programs. We
now do so.

www.manaraa.com

3. OPERATIONAL SEMANTICS

In this section we define an abstract operational semantics for constraint logic pro-
grams based on top-down derivations and investigate when the semantics is conflu-
ent, that is when the results are independent from the literal selection strategy. We
also introduce a canonical form of operational semantics, breadth-first derivations,
which will prove a useful bridge to the algebraic semantics.

3.1. Constraint logic programs and their operational semantics

As described in the last section, a constraint logic programming language is param-
eterized by the underlying constraint domain C. The constraint domain determines
the constraints and the set of function and constant symbols from which terms in
the program may be constructed, as well as a solver solvec. The solver determines
when (or if) to prune a branch in the derivation tree. Different choices of constraint
domain and solver give rise to different programming languages. For a particular
constraint domain C, we let C'LP(C) be the constraint programming language based
on C.

A constraint logic program (CLP), or program, is a finite set of rules. A rule is of
the form H :- B where H, the head, is an atom and B, the body, 1s a finite, non-
empty sequence of literals. We let O denote the empty sequence. We shall write
rules of the form H :- O simply as H. A literal is either an atom or a primitive
constraint. An atom has the form p(¢1,...,t,) where p is a user-defined predicate
symbol and the t; are terms from the constraint domain.

Our examples will make use of the language C'LP(Real) which is based on the
constraint domain Real and the language C'LP(Term) which is based on the con-
straint domain Term.

The definition of an atom p(ty,...,1,) in program P, defnp(p(ty, ..., 1)), is the
set of rules in P such that the head of each rule has form p(sy, ..., sp). To side-step
renaming issues, we assume that each time defnp is called it returns variants with
distinct new variables.

The operational semantics is given in terms of the “derivations” from goals.
Derivations are sequences of reductions between “states”, where a state is a tuple
(G'1 ¢y which contains the current literal sequence or “goal” G and the current
constraint ¢. At each reduction step, a literal in the goal is selected according to
some fixed selection rule, which is often left-to-right. If the literal is a primitive
constraint, and it is consistent with the current constraint, then it is added to it. If
it 1s inconsistent then the derivation “fails”. If the literal is an atom, 1t is reduced
using one of the rules in its definition.

A state (L1, ..., Ly, | ¢) can be reduced as follows: Select a literal L; then:

1. If L; is a primitive constraint and solv(c A L;) # false, it is reduced to
<L1, ey Li—1, Digy, ooy Ly le A Lz>

2. If L; is a primitive constraint and solv(c A L;) = false, it is reduced to

(O] false).
3. If L; is an atom, then 1t is reduced to

<L1, ceny Li—l, 51 = tl, ey S = tn, B, Li+1, ceny Lm | C>

www.manaraa.com

for some (A := B) € defnp(L;) where L; is of form p(si,...,s,) and A is
of form p(t1, ..., tn).

4. If L; is an atom and defnp(L;) = 0, it is reduced to (O | false).

A deriwvation from a state S in a program P is a finite or infinite sequence of states
So =S =---=5, = where Sy is S and there is a reduction from each S;_;
to Si, using rules in P. A derwation from a goal G in a program P is a derivation
from (G 1true). The length of a (finite) derivation of the form Sy = 51 = - = S,
is n. A derivation is finished if the last goal cannot be reduced. The last state in a
finished derivation from G must have the form (O 1¢). If ¢ is false the derivation
is said to be failed. Otherwise the derivation 1s successful. The answers of a goal G
for program P are the constraints Elvars(g)c where there is a successful derivation
from G to final state with constraint ¢. Note that in the operational semantics the
answer 1s treated syntactically.

In many implementations of CLP languages the answer is simplified into a logi-
cally equivalent constraint, perhaps by removing existentially quantified variables,
before being shown to the user. For simplicity we will ignore such a simplification
step although our results continue to hold modulo logical equivalence with respect
to the theory.

Ezample 3.1. Consider the following simple C'L P(Real) program to compute the
factorial of a number:

(R1) fac(0,1).
(R2) fac(N,Nx F) := N> 1, fac(N —1,F).

A successful derivation from the goal fac(1, X) is:

(fac(1, X) ltrue)

Y R2
(1=N,X=NxF/N>1,fac(N—1,F)ltrue)
m
(X =N x F,N>1 fae(N —1,F)I1=N)
m
(N> 1, fac(N —1,F)11=NAX =N x F)
m
(fac(N =1, F)I1=NAX =N x FAN > 1)

U Rl
(N—1=0F=111=NAX=NxFAN >1)
m
(F=111=NAX=NxFAN>1AN—1=0)
m

(OIM=NAX=NxFAN>IAN-1=0AF=1)

In each step the selected literal is underlined, and if an atom 1s rewritten, the
rule used 1s written beside the arrow. Since the intermediate variables are not of

www.manaraa.com

interest, they are quantified away to give the answer
ANFFI=NAX=NXFAN>IAN—-1=0AF=1)
which is logically equivalent to X = 1.

Ezample 3.2. Consider the factorial program again. One failed derivation from the
goal fac(2, X) is:
(fac(2, X) ltrue)
Y R1
(2=0,X = 11true)

m
(O] false)

Note that because the solver can be incomplete, a successful derivation may give
an answer which is unsatisfiable since the solver may not be powerful enough to
recognize that the constraint is unsatisfiable.

Ezample 3.3. For example using the solver of C'LP(R), the following derivation is
possible:

Y =X x X,V <0ltrue)

U
(Y <01Y =X x X)

4
(1Y =X x X AY <0)

Definition 3.1. An answer ¢ to a goal G for program P is salisfiable if T = Je.
Otherwise c is a pseudo-answer for G.

3.2. Confluence of the operational semantics

In the definition of derivation, there are three sources of non-determinism. The
first is the choice of which rule to use when rewriting an atom. The second is the
choice of how to rename the rule. The third is the choice of the selected literal.
Different choices for which rule to rewrite with lead to different answers, and so
for completeness an implementation must consider all choices. However, in this
subsection we give simple conditions on the solver which ensure that the choice
of the selected literal and choice of the renaming do not effect the outcome. This
allows an implementation to use fixed rules for renaming and for selecting the literal
with a guarantee that it will still find all of the answers. This is important for the
efficient implementation of constraint logic programs systems.

The results of this section generalize those given in Lloyd [17] for logic programs.
The primary difference from the logic programming case is that not considering

www.manaraa.com

substitutions makes the results much easier to obtain. One technical difference is
the need to consider incomplete solvers.

In general, the strategy used to rename rules does not affect the derivations of
a goal or its answers in any significant way. This is because the names of the local
variables do not affect the validity of the derivation as the solver does not take
names of variables into account.

We now show that the results of evaluation are “essentially” independent from
the choice of literal selection. We will first define precisely what we mean by a
literal selection strategy (called a “computation rule” in Lloyd [17]).

Definition 3.2. A literal selection strategy S is a function which given a derivation
returns a literal L in the last goal in the derivation.
A derivation is via a selection rule & if all choices of the selected atoms in the
derivation are performed according to §. That is, if the derivation is

(Giler)y = (Galey= = (Gpley)= -
then for each ¢ > 1, the literal selected from state (G; 1 ¢;) is

Note that a literal selection strategy is free to select different literals in the same
goal if it occurs more than once in the derivation.

Unfortunately, answers are not independent of the literal selection strategy for
all solvers. The first problem is that different selection strategies can collect the
constraints in different orders, and the solver may take the order of the primitive
constraints into account when determining satisfiability.

Ezample 3.4. Consider the goal p(X) and the program
p(V):-Y=1Y =2

Imagine that the solver, solv, is defined so that it does not consider the last primitive
constraint occurring in its argument. That is,

solv(X =7Y) = unknown
solv(X =Y AY =1) = unknown
solv(X =Y AY =1AY =2) = unknown
solv(Y = 2) = unknown
solv(Y =2AY =1) = unknown
solv(Y =2AY =1AX =Y) = false

Using a left-to-right literal selection strategy with this solver, the answer 3V (X =
YAY =1AY = 2) is obtained. However, with a right-to-left selection strategy
the goal has a single failed derivation.

The second problem is shown in the following example.

Ezrample 3.5. Consider the goal and the program from the preceding example.
Imagine that the solver, solv, 1s now defined so that it is complete for all constraints

www.manaraa.com

10

with only two primitives and returns unknown for larger constraints. That is,

solv(X =7Y) = true
solv(X =Y AY =1) = true
solv(X =Y AY =1AY =2) = unknown
solv(Y = 2) = true
solv(Y =2AY =1) = false
solv(Y =2AY = 1A X =Y) = unknown

Using a left-to-right literal selection strategy with this solver, the answer 3V (X =
YAY = 1AY = 2) is obtained. However, with a right-to-left selection strat-
egy the goal has a single failed derivation. The problem is that the solver is not
“monotonic”.

Fortunately, most real world solvers do not exhibit such pathological behavior.
They are well-behaved in the following sense.

Definition 3.3. A constraint solver solv for constraint domain C is well-behaved if
for any constraints ¢; and ¢s from C:

logical: solv(ci) = solv(ea) whenever = ¢1 < ¢2. That is, if ¢; and ¢z are logically
equivalent using no information about the constraint domain, then the solver
answers the same for both.

monotonic: if solv(e;) = false then solv(ey) = false whenever |= ¢y + Elvars(cl)cz.
That is, if the solver fails ¢; then, whenever ¢y contains “more constraints”
than ¢y, the solver also fails ¢s.

The solvers in the above two examples are not well-behaved. The solver in the first
example is not logical, while that of the second example is not monotonic. Note that
the above definitions do not use information from the constraint domain and so do
not assume that equality is modeled by identity. For instance, a monotonic solver
for Real is allowed to map solv(1 = 0) to false and solv(X *Y = 1A X Y = 0)
to unknown. We note that any complete solver is well-behaved.

We can prove that for well-behaved solvers the answers are independent of the
selection strategy. The core of the proof of this result is contained in the following
lemma:

Lemma 3.1. (Switching Lemma)
Let S be a state and L, L’ be literals in the goal of S. Let solv be a well-behaved
solver and let S = S1 = S’ be a non-failed derivation constructed using solv
with L selected first, followed by L'. There is a derivation S = Sy = S" also
constructed using solv in which L' is selected first, followed by L, and S’ and 5"
are tdentical up to reordering of theiwr constraint components.

ProoF. There are four ways by which S can be reduced to S’. For simplicity we
will assume that S is the state (L, L' | ¢). This clarifies the argument by removing
the need to keep track of other literals in the goal which are unaffected by the
reductions.

1. TIn the first case both L and L' are constraints. In this case Sy is (L' le A L)
and S"is (O le AL ALY, If we choose Sy to be (L 1eA LY and S” to

www.manaraa.com

11

be (O leA L' AL)then S = S; = S is a valid derivation as we know
that solv(cALAL") # false and so from well-behavedness of the constraint
solver, solv(c A L") # false and solv(e AN L' A L) # false.

2. The second case is when L and L’ are both atoms. Assume that L is

of form p(t1,...,tm) and was reduced using the rule renaming of form
p(s1,...,8m) = B and that L’ is of form ¢(t{,...,%,,,) and was reduced
using the rule renaming of form ¢(s},...,s/,,) := B’ . Then S; is

(t1 =51,y tm = sm, B, L'l ¢)
and S’ is

/ / /
(t1 =51, ytm = sm, Byt] =81, .ty =5

B'l¢).

/
m’
In this case we choose S5 to be

(Lt =s),...,t,, =5, B'lc)

and S” to be S’. Clearly S = Sy = ' is a valid derivation since the rule
renamings are still disjoint from each other.

3. In the second case L is a constraint and L’ is an atom. This case is a simple
combination of the above two cases.

4. In the third case L’ is a constraint and L is an atom. It is symmetric to the
previous case. a

We can now prove that for well-behaved solvers the operational semantics is
confluent, that is independent of the literal selection strategy.

Theorem 3.1. (Independence of the Literal Selection Strategy)

Assume that the underlying constraint solver is well-behaved and let P be a
program and G a goal. Suppose that there is derwvation from G with answer c.
Then, for any literal selection strategy S, there is a derivation of the same length
from G via § with an answer which is a reordering of c.

Proor. The induction hypothesis 1s that if there 1s a successful derivation D of
length N from a state S to state (O I ¢) then for &, there is a derivation of the
same length from S using S to (O 1¢/) where ¢/ is a reordering of ¢. The proof is by
induction on the length of D. In the base case when the length N is 0, .S is simply
(O 1 ¢) and the result clearly holds.

We now prove the induction step. Consider the derivation D of length N + 1,

S=S5=--=Sy=0Olg.

Assume that S selects literal L in the (singleton state) derivation S. As D is
a successful derivation, every literal in D must be selected at some stage. Thus
L must be selected at some point, say when reducing S; to S;41. By applying
Lemma 3.1 ¢ times we can reorder D to obtain a derivation E of form

S=S = -=S=@Il

www.manaraa.com

12

in which L is selected in state S and ¢’ is a reordering of ¢. From the induction
hypothesis there is a derivation E’ of length N using &’ from S} to (O 1 ¢/) where
S’ is a literal selection strategy which picks the same literal in E’ as is picked by &
in S = E’ and ¢’ is reordering of ¢ and hence of ¢. Thus the derivation S = E’ is
the required derivation.

The proof follows by induction. O

Even for solvers which are not well-behaved, it is possible to show a weaker
confluence result — namely that the answers which are satisfiable are the same. To
show this, we first need a lemma which relates the “power” of the constraint solver
to the answers.

Definition 3.4. Let solv and solv’ be constraint solvers for the same constraint
domain. Solver solv is more powerful than solv’ if for all constraints ¢, solv(c) =
unknown implies solv(c') = unknown.

A more powerful constraint solver limits the size of derivations and the number
of successful derivations since unsatisfiable constraints are detected earlier in the
construction of the derivation and so derivations leading to pseudo-answers may
fail. Successful derivations which have an answer which is satisfiable are, of course,
not pruned.

Lemma 3.2. Let S be a state and solv and solv' be constraint solvers such that solv
is more powerful than solv'.

(a) Each derivation from S using solv is also a derivation from S using solv'.

(b) Each successful derivation from S using solv' with a satisfiable answer is also
a derivation from S using solv.

Proor. Part (a) follows by induction on the length of the derivation and the
definition of more powerful.

The proof of part (b) relies on the observation that if a successful derivation has
an answer which is satisfiable then the constraint component of each state in the
derivation must be satisfiable in the constraint theory. Thus solv cannot prune this
derivation. O

We can now show that the successful derivations with satisfiable answers are
independent of the solver used and of the literal selection strategy.

Theorem 3.2. (Weak Independence of the Literal Selection Strategy and Solver)
Let P be a CLP(C) program and G a goal. Suppose there is a successful deriva-
tion, D, from G with answer ¢ and that ¢ 1s satisfiable. Then for any literal
selection strategy S and constraint solver solv for C, there is a successful deriva-
tion from G via S using solv of the same length as D and which gives an answer
which is a reordering of c.

ProOOF. Let usolv be the solver for C which always returns unknown. Clearly any
solver for C is more powerful than usolv. Thus it follows from Lemma 3.2 that D is
also a successful derivation from S using usolv. Now usolv is well-behaved. Thus,
from Theorem 3.1, there is a successful derivation D’ from S via S using usolv of
the same length as D and with an answer ¢/ which is a reordering of ¢. Since ¢ and
hence ¢’ is satisfiable, it follows from Lemma 3.2 that D’ is also a derivation from
S via § using solv. O

www.manaraa.com

13

3.3. Derivation trees and finite failure

Independence of the literal selection strategy means that the implementation is free
to use a single selection strategy since all answers will be found. The derivations
from a goal for a single literal selection strategy can be conveniently collected
together to form a “derivation tree”. This is a tree such that each path from the
top of the tree is a derivation. Branches occur in the tree when there is a choice of
rule to reduce an atom with. In a CLP system, execution of a goal may be viewed
as a traversal of the derivation tree.

Definition 3.5. A derwation tree for a goal (G, program P and literal selection
strategy & is a tree with states as nodes and constructed as follows. The root
node of the tree is the state (G' | true), and the children of a node in the tree are
the states it can reduce to where the selected literal is chosen with §.

A derivation tree represents all of the derivations from a goal for a fixed literal
selection strategy. A derivation tree is unique up to variable renaming. A successful
derivation is represented in a derivation tree by a path from the root to a leaf node
with the empty goal and a constraint which is not false. A failed derivation is
represented in a derivation tree by a path from the root to a leaf node with the
empty goal and the constraint false.

Apart from returning answers to a goal, execution of a constraint logic program
may also return the special answer no indicating that the goal has “failed” in the
sense that all derivations of the goal are failed for a particular literal selection
strategy.

Definition 3.6. If a state or goal G has a finite derivation tree for literal selection
strategy & and all derivations in the tree are failed, G is said to finitely fail for S.

Ezrample 3.6. Recall the definition of the factorial predicate from before. The
derivation tree for the goal fac(0,2) constructed with a left-to-right literal selec-
tion strategy is shown in Figure 3.1. From the derivation tree we see that, with a
left-to-right literal selection strategy, the goal fac(0,2) finitely fails.

We have seen that the answers obtained from a goal are independent of the literal
selection strategy used as long as the solver is well-behaved. However a goal may
also finitely fail. It is therefore natural to ask when finite failure is independent of
the literal selection strategy.

We first note that finite failure 1s not independent of the literal strategy if the
solver is not well-behaved. For instance consider the solvers from Examples 3.4
and 3.5. For both solvers the goal p(X) for the program in Example 3.4 finitely
fails with a right-to-left literal selection strategy but does not finitely fail with a
left-to-right literal selection strategy.

However, for independence we need more than just a well-behaved solver.

Ezxample 3.7. Consider the program

p:-p

www.manaraa.com

14

(fac(0,2) | true)

R1
R2
(0=0,2=11true) (0=N,2=NxF,N>1, fac(N =1, F) | true)
(2=110=0) (2=Nx F,N>1, fac(N —1,F)10= N)
(Ol false) (N>1,fac(N—-1,F)I0O=NA2=Nx F)
(Ol false)

FIGURE 3.1. Derivation tree for fac(0,2)

and the goal (p,1 = 2). With a left-to-right selection rule this goal has a single
infinite derivation, in which p is repeatedly rewritten to itself. With a right-to-left
selection rule however, this goal has a single failed derivation, so the goal finitely
fails.

The reason independence does not hold for finite failure in this example is that
in an infinite derivation, a literal which will cause failure may never be selected. To
overcome this problem we require the literal selection strategy to be “fair” [16]:

Definition 3.7. A literal selection strategy S is fair if in every infinite derivation
via § each literal in the derivation is selected.

A left-to-right literal selection strategy is not fair. A strategy in which literals that
have been in the goal longest are selected in preference to newer literals in the goal
is fair.

For fair literal selection strategies, finite failure i1s independent of the selection
strategy whenever the underlying constraint solver is well-behaved.

Lemma 3.3. Let the underlying constraint solver be well-behaved. Let P be a pro-
gram and G a goal. Suppose that G has a derwation of infinite length via a fair
literal selection strategy §. Then, G has a derivation of infinite length via any
literal selection strategy S'.

ProoF. Let D be a derivation of infinite length via §. We inductively define a

www.manaraa.com

15

sequence of infinite fair derivations Dy, Dy, Ds, ... such that for each N, if Dy is
So=5S = -=>Sy=>---
then the derivation prefix,
So =51 == SN,

is a derivation from G via 8. The limit of this sequence is an infinite derivation
from G via §’.

For the base case N = 0, the derivation is just D itself. Now assume that Dy is
So=>51=> = SN =>5N+1 = SN2 => -

Let the literal I be selected by &' in Sy. As Dy is fair, I must also be selected
at some stage in Dy, say at Sy4; where ¢ > 0. By applying Lemma 3.1 7 times we
can reorder Dy to obtain a derivation Dy41 of the form

So=>5S1= = 5Sv=>Syi = Sy = -
in which L is selected in state Sxy. By construction
50:>51:>"':>SN:>S§\7+1

is a derivation from G via &’. Also Dy is fair as it has only reordered a literal
selection in the fair derivation Dy . O

Theorem 3.3. Assume that the underlying solver 1s well-behaved. Let P be a pro-
gram and G a goal. Suppose that G finitely fails via literal selection strategy S.
Then, G will finitely fail via any fair literal selection strategy.

PrOOF. We prove the contrapositive, namely that if G does not finitely fail
via a fair literal selection strategy &’ then G cannot finitely fail via any other
strategy, say S. If G does not finitely fail with &', then the derivation tree D for G
constructed with 8 must have either a successful derivation or be infinite in size.
If D contains a successful derivation then from Theorem 3.1 there will also be a
successful derivation via &, so G does not finitely fail with §. Otherwise if D has
no successful derivations but is infinite, then it must have a derivation of infinite
length by Koenig’s Lemma. By Lemma 3.3 there must be an infinite derivation
from G via §. But this means that G does not have a finite derivation tree with &
and so does not finitely fail with §. a

3.4. Breadth-first derivations

It will prove useful in subsequent sections to introduce a type of canonical top-
down evaluation strategy. In this strategy all literals are reduced at each step
in a derivation. For obvious reasons, such a derivation is called “breadth first.”
Breadth-first derivations were first introduced for logic programs in [24].

Definition 3.8. A breadth-first derivation step from (Gg | ¢g) to (G1 | ¢1) using
program P, written (Go | co) = ppp) (G1 lc1), is defined as follows. Let Go

consist of the atoms Ay, ..., A, and the primitive constraints ¢, ..., ¢}.

www.manaraa.com

16

1. 7 &= e (co A Ni—y c}) or for some A; in Gy, defnp(Aj) =0, then Gy is

k3

the empty goal and ¢; is false.

2. Otherwise, ¢ is ¢cg A Al ¢; and Gy is By A -+ A By, where each B; is a
reduction of A; by some rule in the program using a renaming such that all

rules are variable-disjoint.

A breadth-first derivation (or BF-derivation) from a state (Gg | ¢g) for program
P is a sequence of states

(Golco) =prpp) (Giler) =Brppy - =BreE) (Gil¢) =Bre) -

such that for each ¢ > 0, there is a breadth-first derivation step from (G; | ¢;)
to (Giy1 Deiy1). When the program P is fixed we will use the notation = pp
rather than = gp(p).

For our purposes we have defined the consistency check for breadth-first derivations
in terms of satisfiability in the constraint theory. In effect the solver is restricted to
be theory complete. However, one can also generalize this check to use an arbitrary
constraint solver.

We extend the definition of answer, successful derivation, failed derivation, deriva-
tion tree and finite failure to the case of BF-derivations in the obvious way.

Ezample 3.8. Recall the factorial program and goal fac(1, X) from Example 3.1.
A successful BF-derivation from this goal is:

(fac(1, X) ltrue)

IBF
(1=N,X=NxFN>1, fac(N —1,F) ltrue)
IBF
(N—1=0,F=111=NAX=Nx FAN >1)
IBF

(OIM=NAX=NxFAN>IAN-1=0AF=1)

We now relate BF-derivations to the more standard operational definition. We
can mimic the construction of a BF-derivation by choosing a literal selection strat-
egy 1n which the “oldest” literals are selected first.

Definition 3.9. The index of a literal in a derivation is the tuple (i, j) where 7 is
the index of the first state in the derivation in which the literal occurs and j is
the index of 1ts position in this state.

The indez-respecting literal selection strategy is to always choose the literal
with the smallest index where indices are ordered lexicographically.

Note that the index-respecting literal selection strategy is fair.

Definition 3.10. Let D be a derivation and Dgp a breadth-first derivation from
the same state. Let Dgp be of the form

(Goley) =pr (G 1) =pr - =pr (Gil¢) =pr -

www.manaraa.com

17

D and Dgp correspond if D has the form
<G0|Co>:>:><G1|61>:>§<GZ|CZ>:>

and D and Dpp are both infinite or both have the same last state.

For instance the BF-derivation of Example 3.8 corresponds to the derivation of
Example 3.1.
It is straightforward to show that:

Lemma 3.4. Let P be a CLP(C) program and G a goal.

1. BEvery finished derivation D from G for program P wvia the indez-respecting
literal selection strateqy and using a theory complete solver has a correspond-
wng breadth-first deriwvation Dgp from G for P.

2. Buvery breadth-first derwation Dgp from G for program P has a correspond-
wng derivation D from a goal G via the index-respecting literal selection strat-
eqy and using a theory complete solver. a

We can now relate BF-derivations to usual derivations. The result for successful
derivations follows immediately from the above lemma and Theorem 3.2

Theorem 3.4. Let P be a CLP(C) program and G a goal.

1. For every successful derivation from G with satisfiable answer ¢, there is a
successful BF-derivation which gives an answer which is a reordering of c.

2. For every successful BF-derwation from G with answer ¢ and for any literal
selection strateqy & and constraint solver solv for C there is a successful
derwation from G via § using solv that gives an answer which is a reordering
of c. a

The correspondence for finitely failed goals requires a little more justification.

Theorem 3.5. Let P be a program and G a goal. G finitely fails using BF-derivations
off there exists a well-behaved solver solv and selection strateqy 8 such that G
finitely fails using (usual) derivations.

ProoF. From Lemma 3.4, GG finitely fails using BF-derivations iff GG finitely fails
with the index-respecting literal selection strategy when using a theory complete
solver. We must now prove that if (G finitely fails with some solver solv and some
literal selection strategy, & say, then G finitely fails with the index-respecting literal
selection strategy when using a theory complete solver. From Theorem 3.3 and
since the index-respecting literal selection strategy is fair, if GG finitely fails with S
and with solver solv then G finitely fails with the index-respecting literal selection
strategy when using solv. Thus from Lemma 3.2, G finitely fails with the index-
respecting literal selection strategy when using a theory complete solver since this
is more powerful than solv. a

4. THE SEMANTICS OF SUCCESS

In this section we give an algebraic and logical semantics for the answers to a CLP
program and show that these semantics accord with the operational semantics.

www.manaraa.com

18

4.1. Logical semantics

We first look at a logical semantics for a CLP(C) program. We can view each rule
in a CLP program, say

A - Ll,...,Ln

as representing the formula

V(A LiA...ALp,)
and the program is understood to represent the conjunction of its rules.

The logical semantics of a C'LP(C) program P is the theory obtained by adding
the rules of P to a theory of the constraint domain C.

The first result we need to show for any semantics i1s that the operational seman-
tics is sound with respect to the semantics. For the logical semantics soundness
means that any answer returned by the operational semantics, logically implies the
initial goal. Thus the answer ¢ to a goal GG is logically read as: if ¢ holds, then so

does G.

Lemma 4.1. Let P be a CLP(C)program. If (G| ¢) is reduced to {(G' | ¢'),
P Tc E(G A) = (G Ae).

ProoFr. Let G be of the form Lq,..., L, where L; 1s the selected literal. There
are four cases to consider.

The first case is when L; is a primitive constraint and solv(c A L;) # false.
In this case G' is Ly,...,Li—1,Liy1,...,L, and ¢ is ¢ A L;. Thus G' A ¢ is
Ly Ao ALt ALyt A+ ALy Ae ALy which is logically equivalent to G A ¢.
Thus, P,7c = (G' A ') = (G Ac).

The second case is when I; is a primitive constraint and solv(c A L;) = false.
In this case G’ is O and ¢ is false. Trivially P,7¢c = (G' A ¢') = (G A ¢) because
(G" A) is equivalent to false.

The third case 1s when L; 1s a user defined constraint. Let L; be of the form
p(s1,...,8m). In this case, there is a renaming,

p(t1,...,tn) = B

of a rule in P such that G" is L1,..., Li—1,81 = 11,...,8m = tm, B, Liy1,..., Ly
and ¢’ is ¢. Then, clearly
PEB-op(t,...,tn)

Hence, since 7¢ treats = as identity,
TelEsi=t,...,8m =tm = 0(s1,...,80) ©p(t1,...,tn)
and so from the above two statements
PTcEBAst =t1,...,8m =tm = p(s1,...,5n)
Hence from the above and since the remaining parts are unchanged.
PTcE(G A= (GAc)

The fourth case is when L; is a user defined constraint for which defnp(L;) is
empty. In this case G’ is O and ¢’ is false. As in the second case above, trivially
P, 7ec E(G' A ') = (G Ac) because (G' A ') is equivalent to false. O

The above lemma straightforwardly gives us the soundness of success.

www.manaraa.com

19

Theorem 4.1. (Logical Soundness of Success)
Let Te be a theory for constraint domain C and P be a CLP(C) program. If goal
G has answer ¢, then

PTcEc—G.
ProoF. Let ¢ be the answer. Then there must be a finite derivation
(Goleg) = ... = (Gyley)

where Gy 18 G, ¢g 18 true, G, 1s O and ¢ is Elvars(g)cn. By repeated use of Lemma
4.1, we have that P,7c = (Gn A cn) = (Go A ¢o). Thus P,7c = ¢, — G and so
Pa/TC ': Elvars(G)cn —G. O

4.2. Algebraic semantics

We now turn our attention to the algebraic semantics. Such a semantics depends
on us finding a model for the program which is the “intended” interpretation of
the program. For logic programs this model is the least Herbrand model. In
the context of constraint logic programs we must generalize this approach to take
into account the intended interpretation of the primitive constraints. Clearly the
intended interpretation of a CLP program should not change the interpretation of
the primitive constraints or function symbols. All it can do is extend the intended
interpretation so as to provide an interpretation for each user-defined predicate
symbol in P.

Definition 4.1. A C-interpretation for a C'LP(C) program P is an interpretation
which agrees with D¢ on the interpretation of the symbols in C.

Since the meaning of the primitive constraints is fixed by C, we may represent
each C-interpretation [simply by a subset of the C-base of P, written C-basep,
which is the set

p is an n-ary user-defined predicate in P
{pldy, .. dn) | and each d; 1s a domain element of D¢ }

Note that the set of all possible C-interpretations for P is just the set of all subsets
of C-basep, P(C-basep). Also note that C-basep itself is the C-interpretation in
which each user-defined predicate is mapped to the set of all tuples, that is, in
which everything is considered true.

The intended interpretation of a CLP program P will be a “C-model” of P.

Definition 4.2. A C-model of a CLP(C) program P is a C-interpretation which is
a model of P.

Every program has a least C-model which is usually regarded as the intended
interpretation of the program since it 1s the most conservative C-model. This result
1s analogous to that for logic programs in which the algebraic semantics of a logic
program is given by its least Herbrand model. The proof of existence of the least
model is essentially identical to that for logic programs. The proof makes use of
the following obvious result:

www.manaraa.com

20

Lemma 4.2. Let P be a CLP(C) program, L a literal and M and M’ be C-models
of P, where M C M’. Then for any valuation o, M |, L implies M’ =, L.
O

Theorem 4.2. (Model Intersection Property)
Let M be a set of C-models of a CLP(C) program P. Then (\M is a C-model
of P.

PROOF. Suppose to the contrary (1M is not a model of P. Then there exists a
rule A :— Ly,..., L, and valuation o where (M }=, L1 A---A L, but (M [, A.
By n uses of Lemma 4.2 for each model M € M

M, LA ALy

and since M is a model of P, M =, A. Hence o(A) € M and hence o(A) € (M,
which is a contradiction. O
If we let M be the set of all C-models of P in the above theorem we arrive at:

Corollary 4.1. Fvery CLP(C) program has a least C-model. a

Definition 4.3. We denote the least C-model of a CLP(C) program P by {m(P,C).

Ezxample 4.1. Recall the factorial program from Example 3.1

fac(0,1).
fae(N, N« F):— N>1, fac(N —1,F).

It has an infinite number of Real-models, including

{fac(n,nl) | ne€{0,1,2,.. }}U{fac(n,0) |n€{0,1,2,..}}.
and

{fac(r,r’) | r,7” € R}.
As one might hope, the least Real-model is

{fac(n,nl) | ne{0,1,2,.. }}.

As one would hope, if a goal is satisfiable in the least C-model then it holds in
all C-models. Hence we have the following theorem:

Theorem 4.3. Let P be a CLP(C) program, G a goal and o a valuation. Then
P, D¢ =6 G iff Im(P,C) o G.

Proo¥F. The “if” direction follows from the fact that (G is a conjunction of literals
and Lemma 4.2 above. The “only if” direction follows from the argument behind
Theorem 4.2. 0O

Corollary 4.2. Let P be a CLP(C) program and G a goal. Then P,D¢ k= 3G iff
Im(P,C) =E3G. O

The next theorem shows that the operational semantics is sound for the least
model. This follows immediately from Theorem 4.1.

www.manaraa.com

21

Theorem {.4. (Algebraic Soundness of Success)
Let P be a CLP(C) program. If goal G has answer ¢, then Im(P,C) E ¢ = G.
O

4.3. Fizpoinl semantics

Soundness of the logical and algebraic semantics ensures that the operational se-
mantics only returns answers which are solutions to the goal. However, we would
also like to be sure that the operational semantics will return all solutions to the
goal. This is called completeness.

To prove completeness it 1s necessary to introduce yet another semantics for
CLP programs which bridges the gap between the algebraic and the operational
semantics. This semantics, actually two semantics, are called fixpoint semantics
and generalize the Tp semantics for logic programs.

The fixpoint semantics is based on the “immediate consequence operator” which
maps the set of “facts” in a C-interpretation to the set of facts which are implied
by the rules in the program. In a sense, this operator captures the Modus Ponens
rule of inference. The T4 ™™ operator is due to van Emden and Kowalski [4] (who
called it T'). Apt and van Emden [1] later used the name Tp which has become
standard.

Definition 4.4. Let P be a CLP(C) program. The immediate consequence function
for P is the function Tg : P(C-basep) — P(C-basep). Let I be a C-interpretation,
and let ¢ range over valuations for C. Then T§([) is defined as

{o(A) | A = L1,...,Lyisarulein P for which I =5 L1 A ... A Ly}

This is quite a compact definition. It is best understood by noting that

e pr) A Api(iy)

iff for each literal p; (t_;) either p; is a primitive constraint and D¢ =, p; (t_;) or p; Is
a user-defined predicate and p;(o(f;)) € 1.

Note that P(C-basep) is a complete lattice ordered by the subset relation on
C-interpretations (viewed as sets). It is not too hard to show [1] that:

Theorem 4.5. Let P be a CLP(C) program. Then TS is continuous. a

Recall the definition of the ordinal powers of a function F' over a complete lat-
tice X:

Fla= {|_|{FTO/ | o' < e} if o is a limit ordinal

F(Ft(a=1)) if @ is a successor ordinal
and dually,
Flo= [HF | o |a <a}if aisa limit ordinal
CTF (Fl(a—1)) if v is a successor ordinal

Since the first limit ordinal is 0, it follows that in particular, FF 1+ 0 = —x (the
bottom element of the lattice X) and F | 0 = Tx (the top element).

From Kleene’s fixpoint theorem we know that the the least fixpoint of any con-
tinuous operator is reached at the first infinite ordinal w. Hence,

www.manaraa.com

22

Corollary 4.3. Ufp(TS) =TS tw. O

Ezxample 4.2. Let P be the factorial program from Example 4.1. Then

THeal 40 = — =0

7ol 1 = TRTEA 0] = {fac(0,1))

Theal 9 = THeal(Theal £1) = {fac(0,1), fac(1,1)}
{fac(0,1), fac(1,1), fac(2,2)}

Tﬁeal T 3 = Tﬁeal (Tﬁeal T 2) —
TEeal ¢ | = THeal(Tfeal 4+ (k — 1)) = {fac(n,n!) | n € {0,1,2,...,k—1}}
TE U tw=U,so TH 1 k = {fac(n,nl) | ne{0,1,2,...,}}.

Thus Ifp(TE%) = {fae(n,n!) | n € {0,1,2,...}}. It also useful to consider the
greatest fixpoint of TS. We have that

THeal | 0 = Real-basep = {fac(r,?') | r, 7 € R}
THeal |1 = THeal (TEeal | () = {fac(0,1)} U{fac(r,v’) |r > 1and r,;r' € R}
TBeal |9 = pfeal(Teal | 1) = {Fac(0,1), fac(1,1)} U

{fac(r,?') | r>2and r,7' € R}

ThHeal | = TReal(Theal | (k- 1)) = {fac(n,n!) |n€{0,1,2,... k-1
P P P
U {fac(r,r") | r>k and r,7' € R}

Tﬁeal *l/ w = ﬂk>0T1§eal \l/ k = {fac(n,n!) | ne {Oa 1a2a .. }}
THeol L+ 1= TRO(TE Lw) = {fac(n,n!) |n € {0,1,2,...}}.

Thus gfp(TE¥) = {fac(n,n!) | n € {0,1,2,...}}. As this is the same as the least
fixpoint, this is the unique fixpoint of the program P defining the fac predicate.

In general, the immediate consequence function of a program may have many
fixpoints, and the greatest fixpoint may not be reached by step w in the descending
Kleene sequence. This is also the case for logic programs.

Ezample 4.3. Consider the CLP(Term) program P:

q(a) = p(X)
p(f(X)) = p(X)

The downward powers of Tge’"m are

Tge’“m¢0 = Term-basep = {q(r) |r—fl(a),0§;'}u{p(r) | r = f'(a),0 < i}
TEerm L1 = Therm(TEer™ | 0) = {g(a)}U{p(r) | r = f'(a),1 < i}

TEem Lk = TR TR L (k- 1)) = {g(@)} U {p(r) | v = Fla) k< i)

T e = = {g(a)}

Tgerm \l/ W+ 1= Tgerm(Tgerm \l/ w) — 0

www.manaraa.com

23

The greatest fixpoint of T£¢™™ is THe™ | w + 1.

There is a simple relationship between the C-models of a program and the Tlg
operator: the C models are exactly the pre-fixpoints of Tg. The following result
for the Term constraint domain was proven in [4], the proof below is essentially
identical.

Lemma 4.3. Let P be a CLP(C) program. Then M is a C-model of P iff M is a
pre-fizpoint of TS, that is TS(M) C M.

Proor. Now M is a C-model of P iff for each rule A := Ly,...,L, in P, M
VA« L1 A---AL,. Thus, M is a C-model of P iff for each rule A :- Ly, ..., Ly in
P and for each valuation ¢, M =, A < Ly A -+ A L,. Thus, M is a C-model of P
iff for each rule A := Ly, ..., L, in P and for each valuation o, if M =, LiA---AL,
then M =, A. Hence by the definition of 75, M is a C-model of P iff TS(M) C M.

O

Given this relationship, it is straightforward to show that the least model of a
program P is also the least fixpoint of 75. This will (eventually) allow us to relate
the algebraic semantics to the fixpoint semantics and to the operational semantics.

Theorem 4.6. Let P be a CLP(C) program. Then Im(P,C) = lfp(TS) = TS 1 w.

Proor.
m(P,C) = '{M|M is a C-model of P}
= [{M|M is a pre-fixpoint of P} From Lemma 4.3
= Ifp(TS) By the Knaster-Tarski Fixpoint Theorem [15].

It follows from Corollary 4.3 that Ifp(TS) =TS tw. O

We now introduce another fixpoint semantics which is a modification of the
immediate consequence function which works on the syntactic level of constraints
rather than the semantic level of valuations. It will be used to bridge the gap
between the immediate consequence function and the operational semantics. It
works on “facts” which are CLP rules in which the body contains only a single
existentially quantified constraint.

Definition 4.5. A fact i1s of the form A :- ¢ where A is an atom and ¢ is a
constraint.

Definition 4.6. Given a rule R of the form A :- G, and a set of facts F', we can
define an immediate consequence of F using R, as the fact

A :-c¢

where there exists a successful BF-derivation
(G 1 true) :>EF(F) (Olc)

That is, there is a breadth-first derivation for G using the set of facts F' as the

program, that has last state (O | ¢).

Note that because of the form of F' any BF derivation can be at most two steps
long, because the bodies of rules in /' do not contain atoms. For example if ¢y is
the conjunction of primitive constraints appearing in (G a derivation for G has the

www.manaraa.com

form
(G Vtrue) =prr) (c1 Leco) = pr@y (B lco Ach).
Let S{gry(F) denote the set of all immediate consequences of /' using R.

The immediate consequences of a set F' of facts using a program P, denoted

Sp(F), is defined by

Sp(F) =) Simy (F)

The function Sp was introduced by Gabrielli and Levi [6], inspired by related
functions defined in [8] and the S-semantics [5]. We are using a different, though
equivalent, formulation than [6].

Ezxample 4.4. Let Iy = {fac(0,1)}, and R = (fae(N, N x F) := N > 1, fac(N —
1, F)). There is a single successful BF derivation
(N >1, fac(N =1, F) ltrue) =gp@r,) (N =1=0,F=11N>1)
=BF(F) (OIN>IAN-1=0AF=1)
Hence Sygry(f1) is {fac(N, N+ F) :-= N>1,N-1=0,F =1}.
Let P be the factorial program from Example 3.1 . Since Sp is a map over a

complete lattice, the set of all facts for predicates defined in the original program,
the ordinal powers of Sp can be defined in the usual way. Then

Sp1t0=1{}
Sp()y=Sp t1={fac(0,1)}
Sp({fac(0,1)}) = Sp 12 = {fac(0,1),(fac(N,N*« F):-N>1,N—-1=0,F=1.)}
Sp 13 ={fac(0,1),(fac(N,N * F):-N >1,N—-1=0,F =1.),
(fac(N,N x F):-N>1, N —-1= N, }
F=N'«F,N >1,
N —1=0,F =1.)

As one would expect, the Sp operator is also continuous. The proof is analogous
to the proof for Tp.

Theorem 4.7. Let P be a CLP(C) program. Then Sp is continuous. a
Corollary 4.4. Let P be a CLP(C) program. Then
Ifp(Sp) = Sp tw =UZ,Sp ti. O
As one would expect, there 1s a very strong relationship between both fixpoint
semantics. To formalize this correspondence, we need to translate facts to elements

in the C-base. This is done by means of “grounding”:

Definition 4.7. Let C be a constraint domain. Let F' be the fact A :— ¢. We

www.manaraa.com

25

define
[Fle ={o(4) | Pe o ¢}
This is lifted to sets of facts in the obvious way: let .S be a set of facts, then

[Sle = ({[Fle | F € 5}

For example,
[p(X.Y) = X =Y]gew = {p(r,r) | r € R}.
and
[fac(N,N«F) :=- N>I, N—1=N F=N*xF N >1,N —1=0,F" = 1]pea
={fac(2,2)}
Clearly variable names do not affect grounding, hence:
Lemma 4.4. Let p be a renaming and F a fact. Then [Fle = [p(F)lc. O
Now we can show how the application of Sp and Tlg correspond.
Lemma 4.5. Let P be a CLP(C) program and F a set of facts. Then,
[Sp(F))e = T5([Fle).-

Proor. We first show that TS([Fle¢) C [Sp(F)]c.
Now, if y € TS([Fle), there is arule A := (G in P and a valuation o such that
yis o(A) and

[Flec Es G. (4.1)
Let GG contain atoms p1(51),...,pn(5,) and let ¢’ be the conjunction of primitive
constraints which appear in G. From (4.1),

DC ':a C/ (42)

and for each p;(§;) there is a fact (p; (t_;) := ¢;)in F,such that o(p;(5;)) € [(pl(t_;) =)le.
From Lemma 4.4, we can assume that these facts have been renamed so that
the variables in each pz(t_;) :— ¢; are digjoint from each other and from those in
A - G

Now o(p;(5i)) € [pl(t_;) := ¢i]e implies that there is a valuation o; such that
o(pi(5)) = O'Z(pl(t_;)) and D¢ o, ¢;. From the disjointedness assumption, the
valuation ¢’ defined by

/ _J oi(x) when z € vars(p; ([;) - ¢i)
o (x) = {0'(1‘) otherwise.

is well defined. Furthermore, for each 1,
De o 55 =1 A

and from (4.2),
De o .

Let ¢ be the constraint

CAS =T AL A NSy =1, Acp.

www.manaraa.com

26

Then ¢ is satisfiable, because D¢ [, c.

By construction, there is a BF derivation using the program F'

<G|true> :>BF(F) <§1 :{1 Aecp A /\gn :{n AN IC/>
=prr) (D1 AT =T At A A5, =1, Acy)

Hence (A := Jyarsayc) € Sp(F). By construction o'(A) € [A = Jyarsarcle.
But ¢/(A) = o(A) =y, so y € [Sp(F)]c.

We must now show that [Sp(F)]c C TS([Flc). This can be done by reversing
the implications in the above proof. O

Theorem {.8. Let P be a CLP(C) program. Then,
[Lfp(Sp)le = 1fp(TF).
ProoF. We first prove by transfinite induction that for all ordinals «,
[Sp 1 ale =TF 1.
There are two cases to consider. The first is when 3 is a successor ordinal. We have
that
TS+ 8 =TS(TS1 5 —1) By definition of the ordinal power
= TS([Sp 1 B — 1]¢) By assumption
= [Sp(Sp T B — 1)]¢c From Lemma 4.5
= [Se 1 Fle By definition of the ordinal power.
The second case is when 3 is a limit ordinal. We have that

TS 18 =U{TS 1t v]y < a} By definition of the ordinal power
= U{[SP 1 ¥lc|y < a} By assumption
= [LH{SP 1 vy < a}]c From definition of grounding
= [Se 1 Fle By definition of the ordinal power.

Thus, by transfinite induction, for all ordinals «,
[Sp 1 ale =TF 1.
It follows from Corollaries 4.3 and 4.4 that [[fp(Sp)lec = {fp(Ts). O

4.4. Correspondence between fizpoint and operational semantics

At first sight the two fixpoint semantics are quite different from the operational
semantics, but in fact the ordinal powers of the Sp operator are strongly related
to BF-derivations, as shown in the following lemma. Recall that BF-derivations
are defined with respect to the theory, or, equivalently, they always make use of a
theory-complete solver.

Lemma 4.6. For a CLP(C) program P and goal G, there is a successful BF deriva-
tion of length less than or equal to n + 1 for state (Gy | ¢g) in P with answer ¢
iff there is a successful BF derivation for (Go l co) in Sp 1 n with answer ¢’ such

that /TC ': Elvars(GD,cD)c And Elvars(GD,cD)C/~

ProoF. We give the “then” direction, the “if” direction is proved analogously.
The proof is by induction on n. For the base case, the only one step successful
BF derivations are where Gy is entirely made up of constraints. In this case the

www.manaraa.com

27

derivation
<G0 | Co> :>BF(Q) <D | co N\ G0>

exists regardless of the program @, and clearly the same derivation is a successful
derivation in the empty program Sp 1 0.
Consider a successful BF derivation in P of the form

(Golco) =prpp) (Giler) =prpy - =Bre) (B eng)
Consider the BF derivation step
<G0 | Co> :>BF(P) <G1 | Cl>

Then ¢; is ¢g A ¢ where ¢ are the constraints in Gy. Let p;(5;),1 < i < n be the
atoms in (.

The derivation step uses renamed apart program rules p; (t_;) :— B; for each
atom p;(8;) to obtain

Gl 51:tlaBlaSZZtZaBZa"'asn:tnaBn

Let Vi be vars({G1 l¢1)). By the induction hypothesis there is a successful BF
derivation for (G; I ¢1) with final state (O | 2’) where T = v, cpq1 & vz’ Tt
must take the form

<G1 lcog A 66> = BF(Spt(n—1)) <l‘ lcg A 66 A C/1> = BF(Spt(n-1)) <D | l‘/>

where ¢} is the constraints in G1, z is the constraints that result from replacing the
atoms in G and ' is co Ac) Ac) Aw.
Let a; be the constraints in B;. Then ¢ is § = TAZLA - AS, =tn Ay,
Let g¢;;(t;;), 1 < j < m; be the atoms in B;. For each ¢;; there exists a renamed
apart copy of a fact in Sp 1 (n — 1),

qij(Uij) 1= Bij

used in the BF derivation step. Hence
n m;
/\ /\ ﬁij = 172']' A By
i=1j=1

Because ' is satisfiable, each of the constraints in the following BF-derivations
are satisfiable. We have a successful BF-derivation for each B;.

X

<Bi |true> = BF(Spt(n—1)) </\ ﬁij = 172']' A By | l‘l>
j=1

m;
= BF(Spt(n—1)) (O la; A /\ Ui = Tij A Bij>
j=1
Let C; be Elvars(;l)xi A /\;n:’1 di; = U;; A\ Bj;j. Hence an (appropriately renamed)
copy of each of the facts
pi(ts) = C;
exists in Sp 1 n by the definition of Sp.

www.manaraa.com

We can now construct a successful derivation for {(Gg | ¢g) in Sp 1 n, using some
renamed apart versions of the above facts p;(pi(t;) = Ci), to rewrite each atom
pi(53).
<G0 | Co> = BF(Sptn) <§1 =p ({1),p1(01), e, 8y = pn({n),pn(cn) Lo A 66>
= pE(sptn) (O 1o Ag AT = pi(f1) Api(C) A+ A Sy = palln) A pa(Cn))

Let ¢ be cog Ach A S = pl({l) Ap1t(Ci) A A8, = pn({n) A pn(Cr) and let
Vo = vars({Gy | ¢p)). Then

o & g Aco ATy, Nizy 5t = pilli) A pi(Ch)
since ¢’ and ¢j only involve variables in 1}
e co A ey ANZ (B 5t = pilti) A pi(Ci))
since each expression p;(t;) A p; (C;) does not share variables
e o Acp ANZ (B = 1 A C)
since variables in ¢; and C; do not intersect those in G and ¢g
g A 66 A /\?:1(EIVD§} =i Na; A /\;n:l1 Uij = 172']' A Bij)
by definition of C;
— HVDCO A 66 A /\?:1(52 =i Na; A /\;n:l1 Uij = 172']' A Bij)
since by construction the terms do not share variables
S Ao Ay AFT =0 A--Fn=ta Azt A Aag ANZ A
rearranging terms
< Jv,co Acy Acy Ax by the definition of ¢) and z
< Jy,x’ by definition of x’ B B
< v, cny1 because Vo C Vi and v, cpqq ¢ vy 2’

mi

j=1 Uij = Uij A Bij

This completes the proof of the induction step. a
Using the above lemma and Corollary 4.4 it is easy to show the following;:

Lemma 4.7. Let P be a CLP(C) program. Goal G has an successful BF derivation
with answer ¢ for program P iff there exists some integer n such that G has a
successful BF-derivation for program Sp 1 n with answer ¢’ such that Te | ¢ <
d. O

Now we are in a position to relate the Sp operator to the standard top-down
semantics.

Theorem 4.9. Let P be a CLP(C) program. Goal G has an answer ¢ for program
P iff G has a successful derivation for program lfp(Sp) with answer ¢’ such that
TelEcod.

PrOOF. Since a successful BF-derivation is finite, GG has a successful BF-derivation
for program { fp(Sp) iff there exists some integer n such that G has a successful BF-
derivation for program Sp 1 n. Using this observation, the result is an immediate
consequence of Theorem 3.4 and Lemma 4.7. O

The results in this subsection were first presented in [6].

4.5. Completeness

We are now in a position to prove that the operational semantics is complete for
the algebraic semantics.

www.manaraa.com

29

Theorem 4.10. (Algebraic Completeness of Success)
Let P be a CLP(C) program, G be a goal and 0 a valuation. If

Im(P,C) =o G.
then G has an answer ¢ such that D¢ =4 c.

Proor. If

Im(P,C) 4 G, (4.3)
then, from Theorem 4.6,

p(Tp) e G.
From Theorem 4.8,

Ufp(Sp)le Eo G.

Let ¢g be the conjunction of constraints in GG, and p;(5;),1 < ¢ < n be the atoms
in GG. TFor each p;(5;) there exist renamed apart versions of facts in {fp(Sp)
(pl(t_;) := ¢;) and valuations 6#; such that 6(p;(5;)) = Hz(pz(t_;)) and D¢ |y, .
From the definition of [fp(Sp) there also exists k& such that each (p; (t_;) 1=) s
in Sp 1 k. From the disjointedness assumption, the valuation ¢’ defined by

0 (z) = {zl(l‘) when @ € vars(pi(t_;) =)
(z) otherwise.

is well defined. Furthermore, for each 1,
De =g 5 =1; A c

and from (4.3),
De o co.

Let =coAS =11 Acy A+~ A5, =i, Acy. Then
De ko .

Hence there is a successful BF derivation for program Sp 1 k:

—

<G | true> = BF(Sptk)) < 1= _1 ANci A N§y, = {n Ayl Co> = BF(Sptk) <D |C/>

By Theorem 4.9 there exists a successful derivation for G in P with answer ¢ such
that 7c = Jyars(q)¢’ <+ c. Hence, since D¢ models 7e,

D f=¢ c

and since § and 6’ are the same on the variables of G, D¢ |Eg ¢. O

We can rephrase Theorem 4.4 and Theorem 4.10 to succinctly capture that
the solutions to the goal in the minimal model are exactly the solutions to the
constraints the operational semantics returns as goals. The “if” direction follows
from Theorem 4.10 and the “only if” from Theorem 4.4.

Theorem 4.11. Let P be a CLP(C) program and G be a goal with answers ¢y, ca,
Then

Im(P,C) EG & §7 c. O

i=1

www.manaraa.com

30

The second result we need to show is that the operational semantics is complete
with respect to the logical semantics. For the logical semantics, completeness is
understood as that the answers returned by the operational semantics cover all of
the constraints which imply the goal.

Theorem {.12. (Logical Completeness of Success)
Let Te be a theory for constraint domain C and P be a CLP(C) program. Let
G be a goal and ¢ a constraint. If P,7¢c = ¢ — G then G has answers ¢q, ..., cp
such that

TelEe—= (a1 V... Vep).
ProoF. We first prove that if
PTcEc—G.
then
ToeEc— \/ ;.
i=1

where ¢1, ¢s, ... are the answers to (.
Given that

PTecEc—G (4.4)
we show that for each model I of 7¢

ITEc— @ci. (4.5)

We can consider the models of P which are based on I. Because Im(P,) is a model

of P,7¢, by (4.4), we have that
Im(P,I) Ec—G. (4.6)
By Theorem 4.11, we have that

oQ

Im(P,1) £ G+ (\/ @)

i=1

Thus by (4.6),

Im(P,I) Ec—(

Ci)~

<3

K3

Il
-

And this means

I|:c—><76i.

i=1
The theorem now follows from the Compactness Theorem (see for example [21]).
O

www.manaraa.com

31

This is a very strong result. It is worth pointing out, that in general, n can be
greater than 1.

Ezample 4.5. Consider the CLP(Real) program P:

p(X) = X >2.
p(X) - X <2

Then
P, Treat = true — p(X).

and the answers to p(X) are X > 2 and X < 2. Both answers are needed to cover
true:

Theat = true — (X > 2V X <2)

However, for some constraint domains, the number of answers which need to be
considered is just one. The following definition captures such cases.

Definition 4.8. A theory T for a constraint domain has independence of constraints
if for all constraints ¢, ¢y, ..., cp,

T ': c 4> lears(c)cl V...V élvars(c)cn)~

implies that for some i, T = ¢ ¢ Elwrs(c)ci.

The following is a corollary of Theorem 4.12.

Corollary 4.5. Let P be a CLP(C) program, G be a goal and let T¢ have indepen-
dence of constraints. If P,7¢ |E ¢ = G for constraint ¢, then G has an answer
A such that P,Tc =c— A. O

The constraint theory Tgreq does not have independence of constraints, witness
Example 4.5. The constraint theory 77, does have independence of constraints as
long as there are an infinite number of function symbols. This explains the stronger
logical completeness result for logic programs, for which any logical answer will be
covered by a single qualified answer.

Finally, we can recast the results of this section in terms of the program’s “success
set.” This set essentially contains the answers that the program will give to single
atom queries.

Definition 4.9. The success set of a program P, SSp, is the set of facts

{A :- c¢|cis an answer to A for P for some atom A}.

Theorem {.13. Let P be a CLP(C) program. The following are equivalent:
e [SSple,
o [lfp(Sp)le.
o Up(TE),
e Im(P,C).

www.manaraa.com

32

Proo¥F. The first equivalence follows from Theorem 4.9, the second from Theo-
rem 4.8, and the third from Theorem 4.6. O

5. SEMANTICS FOR FINITE FAILURE

We have seen that in the operational semantics for CLP programs, goals can also
finitely fail. We now give an algebraic and a logical semantics for finite failure for
CLP languages. Our first step is to define the Clark completion of a program.

5.1. The Clark completion

The algebraic and logical semantics we gave in the last section for successful goals
does not fit well with finite failure, since there i1s at least one C-model, namely
the C-base, in which any goal is satisfiable. The problem is that there are too
many models for a program. This 1s possible because a rule is only read as an “if”
definition for its head.

When dealing with finite failure, a constraint logic program must be understood
as representing its “Clark completion”. The Clark completion captures the reason-
able assumption that the programmer really wants the rules defining a predicate to
be an “if and only if” definition—the rules should cover all of the cases which make
the predicate true. Clark’s original definition, for logic programs, also included the
theory of Term [2].

Definition 5.1. The definition of n-ary predicate symbol p in the program P, is
the formula

VXy VX, p(Xy, .., Xp) & B V...V By
where each B; corresponds to a rule in P of the form
p(t1,. .y tn) = L1,..., Ly
and B; 1s
Y, 3 (Xin=t A AX, =t AL A L)

where Y7, ...,Y; are the variables in the original rule and X,,..., X, are vari-
ables that do not appear in any rule. Note that if there is no rule with head p,
then the definition of p is simply

VX)L VX, p(Xe, .., X)) & false

as \/ 0 is naturally considered to be false.
The (Clark) completion, P*, of a constraint logic program P is the conjunction
of the definitions of the user-defined predicates in P.

Ezxample 5.1. The completion of the factorial program is
faC(Xl,Xz) — (Xl = 0/\X2 = 1) vV
AN IF (X1 =NAXo=NxFAN>1A fac(N — 1, F)).

www.manaraa.com

33

If we take a program’s completion as the logical formula which captures the true
meaning of the program then the intended interpretation of the program should be
a C-interpretation which is a model for the completion.

Definition 5.2. Let P be a CLP(C) program. A C-model for P* is a C-interpretation
which is a model for P*.

Ezrample 5.2. Recall the factorial program and its completion from Example 3.1.
The only Real-model for the completion is:

{fac(n,n!) | ne{0,1,2,...}}.
Other Real-interpretations, such as

{fac(n,nl) | ne€{0,1,2,..}}U{fac(n,0) | ne{0,1,2,..}}
or

{fac(r,7") | r,7”" € R}

which are models of the original program are not models of the completion.

Of course there may still be more than one C-model for a program’s completion,
witness the C'LP(Real) program

p(X) = p(X).
The models of the completion have a very natural relationship with the fixpoints

of the immediate consequence function: the C-models are exactly the fixpoints of
7%,

Lemma 5.1. Let P be a CLP(C) program. A C-interpretation I is a model of P*
ff I is a fixpoint of Tg. a

Given this relationship, it is clear that the completion of a program has a least
and greatest C-model which are the least and greatest fixpoints of 7.

Definition 5.3. Let P be a CLP(C) program. We denote the least C-model of P*
by Im(P*,C) and the greatest C-model of P* by gm(P*,C).

This allows us to relate the algebraic semantics of the program completion to
the fixpoint semantics

Theorem 5.1. Let P be a CLP(C) program.
o Im(P*,C) =Ifp(TS) =TS tw =1Im(P,C).
o gm(P*,C) = gfp(TE). O

There is a very natural notion of failure if the semantics of a program P is
regarded as the models of its completion. Namely, GG should fail iff V= G holds in
all C-models of P*. This is symmetric with our notion of success, as can be seen
from the following result.

Theorem 5.2. Let P be a CLP(C) program and G a goal.

www.manaraa.com

34

o P* D¢ 3G iff Im(P*,C) = 3G.
e P* De l=-3G iff gm(P*,C) = - 3G,

PROOF. Since Im(P*,C) is a C-model of P*, if P*, D¢ |= 3G then Ilm(P*,C) = 3G.
To prove the other direction, suppose Im(P*,C) 3G. Then Im(P*,C) o G, for
some valuation o. For every C-model M of P*, we have Im(P*,C) C M, so that,
by Lemma 4.2, M =, G. Thus P*, D¢ E 3G.

The second item is proved as follows. Now P* D¢ = — 3G implies gm(P*,C) E
- §|G, as gm(P*,C) is a C-model of P*. Now we prove the other direction. The
proof is by contradiction. Assume that gm(P*,C) E - 3G, but that for some
C-model of P*, M say, and valuation ¢, M |=, G. But gm(P*,C) D M. Hence by
Lemma 4.2, gm(P*,C) =, G, a contradiction. O

Having related the previously developed logical and algebraic semantics to the
Clark completion, we now turn to the operational semantics.

We first prove that the results for success given in the last section continue to
hold if a program P is replaced by its completion P*. We can then prove the
operational semantics for success is sound with respect to the program completion.
This depends on the following proposition.

Proposition 5.1. Let P be a CLP(C) program. Then, T¢c E P* — P.
Proor. Straightforward from the definition of P*. 0O
Corollary 5.1. Let P be a CLP(C) program. If P,T¢ |E ¢ = G then
P leEc— G O
Theorem 5.3. Let P be a CLP(C) program. If goal G has answer ¢, then
P Ee— G
ProoF. If GG has answer ¢, then from Theorem 4.1
PTcEc—G.
From Corollary 5.1,
P leEc— G O

The second result we need to show is that the operational semantics is complete

with respect to the completion semantics. We do this by proving the converse of
Corollary 5.1.

Lemma 5.2. Let P be a CLP(C) program. If P*,T¢ = ¢ — G then
PTcEc—G.

PrROOF. Let I be any model of 7¢. From the hypothesis, Im(P*,I) = ¢ — G.
By Theorem 5.1, Im(P,I) E ¢ — G. For any valuation ¢ that satisfies ¢ we have
Im(P,I) E» G and so, by Theorem 4.3, P, =, (. Since this applies to all
valuations satisfying ¢, P, I | ¢ — G. Since I was arbitrary, P, 7¢c E ¢ — G. a

Theorem 5.4. Let P be a CLP(C) program. Let G be a goal and ¢ a constraint. If
P* T¢ = ¢ — G then G has answers ¢y, . .., ¢, such that

TelEe—= (a1 V... Vep).

www.manaraa.com

35

Proor. If P* Tc = ¢ — G, then from Lemma 5.2, P, T¢ = ¢ — G. It follows from
Theorem 4.12 that G has answers ¢y, ..., ¢, such that

TelEe—=(a1V...Vey). DO

5.2. Soundness

In order to prove soundness of finite failure we need to develop a stronger rela-
tionship between a state and the states it can be reduced to. Our first result is a
generalization of Theorem 4.1.

Lemma 5.3. Let P be a CLP(C) program. If (G ¢) is reducible, and using selected
literal L may be reduced to any of the states (G 1), ..., (Gm o) then

P*a/TC G/\C \/ vars(GAc) G /\Cl)

ProoFr. Let G be of the form Lq,..., L, where L; 1s the selected literal. There
are four cases to consider.
The first case is when L; is a primitive constraint and solv(c A L;) # false. In
this case, (Gl ¢) is reducible to the single state (G' I ¢y where G"is Ly, ..., Li—1, Lit1,..., Ln
and ¢/ is ¢ A L;. Thus G A is Ly A...ALicy ALiyt A ... ALy Ae ALy and

so,

P*,/TC ': (G A C) A Elvars(G/\c) (G/ A C/)'

The second case is when I; is a primitive constraint and solv(c A L;) = false.
In this case, (G | ¢) is reducible to the single state (G’ | ¢/) where G’ is O and ¢’ is
false. As the solver is correct with respect to the theory, this means that L; A ¢
and hence GG A ¢ are unsatisfiable in any model of 7¢. Thus,

P*,/TC ': (G A C) A Elvars(G/\c) (G/ A C/)'

Otherwise L; is an atom. Let L; be of the form p(§). The third case is when
there are rules defining p in P. Let them be

p(t1) - B

Then (G 1 ¢) can be reduced to (Gy 1 e1), ..., (G | ep) where ¢; is ¢ and G is
Ll,.. Lz 1,§—p2(2) pz(Bz) LZ'+1,...,L”

where p; renames the i’th rule from the variables in the original state.
Choose 7' to be distinct new variables. Because 7¢ treats equality as identity,

Te Ep(8) & 375=7Ap(2). (5.1)
From the definition of P*, it contains the definition of p, which is the sentence
VEp(Z) & B £=1 A BV -V (3ym T=1tm A Bp).

Hence

From (5.1),
P TelEp(3) 0 325=2A 9 2=t AB)V -V (3 Z=tm A Bn)).

www.manaraa.com

As p; renames away from §,

—

(FFF=ZA3G Z=0 A Bi) o Fpi(§i)IZ 5= 2N 7= pi(ti) A pi(By)).
From the fact that 7¢ treats equality as identity,

TelE(325=EFA3g Z=14 A Bi) & Gpi(G) 5= piti) A pi(Bi)).
Thus from (5.2),

P Te = p(3) © \ B0() 7= pil@) A pi(B)).
i=1
Clearly, since p; renames the variables y; away from the variables in the original
goal,

P TeEGAee \/ 3pi(i) (La Ao Licy AS=pi(6) A pi(Bi) A Lixi Ao A L Ac).
i=1
and from the definition of each G; and ¢;
P*,/Tc ':G/\CH \/le(y_;) Gi N e;.
i=1

Hence,
P*a/TC ': (G A C) Ad \/ Elvars(G/\c) (Gz A Ci)~
i=1

The fourth case is when there are no rules in P defining p. This means that L; and
hence G A ¢ are unsatisfiable in any model of P*. In this case, (G | ¢) is reducible
to the single state (G’ 1 ¢/) where G’ is O and ¢’ is false. Thus,

P*’/TC ': (G A C) & Elvars(G/\c) (G/ A C/)~ O

Now we are in a position to relate the answers of finitely evaluable goals to the
logical semantics. A goal is finitely evaluable if it has a finite derivation tree.

Theorem 5.5. Let Te be a theory for constraint domain C and P be a CLP(C)
program. Let G be a goal which is finitely evaluable with answers c1,... ¢,
Then

P Tl EGS (a1 V...Vey).

Proor. The proof is by induction on the partial derivation trees® T7,...T}
constructed from GG where T} is the final derivation tree. The induction hypothesis

I Partial derivation trees are a generalization of derivation trees in which nodes that can
reduce may have no children. A partial derivation tree represents an as yet incomplete search of
a derivation tree.

www.manaraa.com

37

is that at stage ¢, if the leaves of T} are the states (G ler), ..., (G L ey), then

P*,/TC ': G & \/ Elvars(G)(Gi A Ci)'
i=1
The base case, when i = 1 is obvious as 77 is just (G | true) and clearly

P*Te | G Jyars(a)(G Atrue).

We now prove the induction step. Assume that the induction hypothesis holds for
T; where ¢ < k. We shall show that it holds for T;;;. Let the leaves of T; be

(G ler), ..., (G lew). By induction hypothesis,
P*,/TC ': G & \/ Elvars(G)(Gi A Ci)~ (53)
i=1

Now T;41 is constructed from Tj by choosing a leaf state, say (G; | ¢;) and adding
as children the states, (G 1¢}), ..., (G, 1 ¢, which (G} | ¢;) can be reduced to
using the selected literal. By construction, therefore, the leaves of T;; are

(Giler), - (Gjmn Ve (G ber), - (Gl Ve (Gl Vejg), o (G Dem).

From Lemma 5.3, we have that

i

P*,/TC 'Z (G] A Cj) — Elvars(Gj/\Cj)(G;' A C;)
1

3

7

Thus from (5.3),

i

3

Elvars(G)(Gi A CZ)) \ Elvars(G)(Elvars(Gj/\c]')(G;' A C;))
#) i=1

As the variables introduced in the reduction are disjoint from those in G,

<=z

P Te =G o (

1=

—_
.

)

P*,/TC ': G & (\/ Elvars(G)(Gi A Cl)) A (\/ Elvm's(G)(G; A C;))
i=1,i#5 i=1
Thus the induction hypothesis holds for T;4;.
By induction we therefore have that for the leaves, (G le1), ..., (Gp lep) of Tk,

P
P*,/TC ': G & \/ Elvars(G)(Gi A Ci)'
i=1

As T}, is the final derivation tree, each G; 1s the empty goal. Thus,

P
P*a/TC ': G & \/ Elvars(G)ci~
i=1
Now the answers to GG are exactly those constraints Elvars(g)ci which are not false.
Thus the result follows. a

An immediate corollary to this is logical soundness of finite failure, as this is the
special case when there are no answers and \/ () is just false.

Corollary 5.2. (Logical Soundness of Finite Failure)
Let T¢ be a theory for constraint domain C and let P be a CLP(C) program. If

www.manaraa.com

38

goal G finitely fails then P* T¢ = — 3G. o

Soundness of finite failure for the algebraic semantics is an immediate conse-
quence of the soundness of finite failure for the logical semantics, as any intended
interpretation of the constraint domain is a model of the constraint theory.

Theorem 5.6. (Algebraic Soundness of Finite Failure)
Let P be a CLP(C) program. If goal G finitely fails then:

o P* Do - 3G, and

o gm(P*,C) E— 3G. o

5.3. Logical completeness

Proving completeness of finite failure is more problematic. We begin by investigat-
ing completeness with respect to the logical semantics. The first reason is that the
solver can be incomplete, and so not detect that a derivation is failed with respect
to the theory. For example, a solver which delays non-linears will not determine
that the goal sqr(X, —1) with the CLP(Real) program

sqr(X, X * X).

should fail. For this reason we require the solver to be theory-complete

The second restriction concerns fairness of the literal selection rule—as we have
seen selection rules which are not fair may turn failed derivations into infinite
derivations.

Ezxample 5.3. Consider the program

q - p,1=2.

p - D
Clearly gm(P*,C) E - 3¢, but the goal ¢ will not finitely fail with a left-to-right
selection rule.

The example above shows that for completeness we require a scheduling strategy
which is fair.

As long as the solver is theory complete and the literal selection strategy is fair,
completeness of finite failure holds .

Theorem 5.7. (Logical Completeness of Finite Failure)
Let Te be a theory for constraint domain C, let P be a CLP(C) program, and
let G be a goal. If
P* 7o E-3G
then G finutely fails for any fair selection rule, provided the solver used is theory
complete.

ProoOF. The proof is rather complex. We prove the contrapositive: if G does not
finitely fail for a fair selection rule then the goal is satisfiable in some model of 7¢

www.manaraa.com

39

and P*. Clearly this is true if G has a successful derivation. The case of interest is
when G has an infinite fair derivation

(Goleg) = (Gile)) = (Gales) = -+

The key idea is to build a non-standard model of 7¢ and P* which makes each
state in the derivation true. This provides a model of P*, 7¢ in which G is satisfiable.

First consider the sequence c¢p, c¢1, ...of constraints. Let ¢ be /\?io c;. As
the solver is theory complete we know that for each ¢;, 7¢ & — Je;. From the
Compactness Theorem, therefore, 7¢ = — Je. Thus there is a model I of 7¢ and a
valuation ¢ such that

IE,c

The next step is to build an I-model of P*. Let M’ be the I-interpretation,
{o(A4)] atom A is in goal G; for some 7}

where o 1s arbitrarily extended to all variables in the derivation.

Now M’ is a post-fixpoint of T5. This is because, for each ¢(A) € M’, as the
derivation is fair, and so A must have been selected, there is an instance of a rule
in P of form

o(A) := o(L1),...,0(Ln)

such that each o(L;) appears in the derivation. If L; is an atom, then by definition
of M', o(L;) € M'. If L; is a primitive constraint, then as the derivation is fair,
the renaming of the constraint in the derivation corresponding to L; will have
been selected and placed in the constraint ¢ for some k. Thus, I =, L;. Hence,
M CTHOM).

By a standard construction, it follows that there is a fixpoint M of T,ﬁ such that
M’ C M. From Lemma 5.1, M is a model of P*. By construction, for each G;,
M ., G; andsoM':glG. a

5.4. Algebraic completeness

Algebraic completeness of finite failure is the most difficult result to achieve. Clearly
we require the solver to agree with the the domain of computation, on the satisfi-
ability of constraints, that is it must be complete. Note that completeness of the
solver implies that the constraint theory is strong enough to determine if every
constraint is satisfiable or not, as the solver must agree with the theory. Hence the
constraint theory must also be satisfaction complete.

We might expect that for completeness to hold for the algebraic semantics all
we need 18 a complete solver and a fair computation rule. This not true, we require
more.

Ezxample 5.4. Consider the CLP(Term) program P

q(a) = p(X)

p(f(X)) = p(X)
P* is

VY (p(Y) ¢ 3X (Y = f(X) Ap(X))) AVY (¢(Y) & 3X (Y = a A p(X))).
Now the only Term-model of P* is §) but the atom ¢(a) does not finitely fail with

www.manaraa.com

40

a complete solver for any selection rule.

Intuitively, the reason for the problem is that the atoms in TS | w\ gfp(TS) are
true in some model, but not true in a C-model.

Ezample 5.5. Consider the C'LP(Term) program P defined above. We can define a
pre-interpretation I as follows, that is a model of Treppm. Let the domain of I be the
Herbrand terms a, f(a), f(f(a)),... as well as the integers. Interpret the functions
a and f as follows: ar = a, fr(t) = f(t) when ¢ is Herbrand, and f;(¢) =%+ 1 when
t is an integer. Now I = Trerm and {q(a)} U{p(z) | z € Z} is an I-model of P* in
which ¢(a) holds.

The problem is that the greatest model of the completion may not be Tlg Jw.
We can only hope for equality in the case that the greatest model is Tlg Jw.

Definition 5.4. A CLP(C) program P is canonical if TS | w = gfp(T%).

Fortunately, for a large class of constraint domains, including all those of practi-
cal interest, every program has an equivalent canonical program (where by equiv-
alent we mean a program with the same success and finite failure behavior as the
original, on queries with predicates only from the original program). See [14, 23] for
constructions of equivalent canonical programs for the constraint domain Term.

Before we show that this condition is sufficient to achieve completeness for the
algebraic semantics, we require a number of technical lemmas to relate the ordinal
powers of Tlg and breadth-first derivations.

Definition 5.5. A breadth-first derivation D from state s is compatible with a
valuation ¢ if for each state (G l¢) in D, D¢ =5 Jyars(s)c.

Note that a failed BF-derivation 1s not compatible with any valuation.
The following lemma corresponds to the Lifting Lemma [17] but we are only
interested in the case of BF-derivations.

Lemma 5.4. If goal G has a successful or infinite breadth-first deriwation compatible
with valuation o and o is a solution of constraint ¢, then (G| ¢) has a successful
or infinite breadth-first derivation compatible with o.

ProoF. Let GG have the breadth-first derivation D,
<G |t7°ue> = BF <G1 | cl> = BF ' =BF <GZ' | CZ'> = BF ",

which 1s compatible with ¢. We can assume that the variables introduced in the
derivation are disjoint from the variables in ¢. Now consider the sequence of states,
D/

<G|c> = BF <G1|C/\cl> = BF ' =BF <GZ'|C/\CZ'> —BF "

We claim that this is a breadth-first derivation from (G I ¢). The only reason that
it may not be a valid derivation is that for some state in the derivation, (G; le A ¢;)
we have that ¢; is unsatisfiable in the constraint theory. Now, as D is compatible

www.manaraa.com

41

with ¢ and o is a solution of ¢, we have
De ':a A Elvars(G)C%

As the introduced variables in D are distinct from ¢, vars(G) C vars(c) Nvars(c;),
and so

DC ':0 Elvars(G)Uvars(c)(c A Ci)~

Hence ¢ A ¢; is satisfiable in the constraint theory. It also follows that D’ is
compatible with o. a

The following two lemmas relate the breadth-first derivations of goals to the
breadth-first derivations from their component literals. These lemmas are one of
the chief reasons why we introduce breadth-first derivations, as the lemmas do not
hold for ordinary derivations.

Lemma 5.5. Let o be a valuation on the common variables of literals L1 and Lo. If
there 1s a breadth-first derivation Dy from literal Ly and a breadth-first derivation
Dy from literal Ly such that D1 and Dy are compatible with valuation o, then
there is a breadth-first derivation Ds from goal L1, Lo such that:

1. Ds 1s compatible with o.
2. If Dy and D4 are successful then so is Ds.
3. The length of Ds s the mazimum of the lengths of D1 and Ds.

Proor. Let D; be the derivation

(L1 Vtrue) = prp (Gile1) =pr - =pr (Gil ¢;) =pp -
and D5 be the derivation

(La Virue) =pr (G 1)) =BFr - =pr (Gi 1)) =pF -

We can assume that the variables introduced in D are disjoint from the variables
in D5 and vice versa. Let D3 be

<L1,L2 |t7°ue> =BF <G1,G/1 le; A C/1> =BF - =BF <GZ',G;» le; A c;> =BF -

It is straightforward to verify that Ds is a valid breadth-first derivation from L1, L+
which satisfies the conditions of the lemma. a
Similarly we can prove that:

Lemma 5.6. If there s a breadth-first deriwvation Ds from goal L1, Lo, then there
1s a breadth-first derivation D1 from literal Ly and a breadth-first derivation D4
from literal Lo such that:

1. If D3 1s compatible with valuation o then so are D1 and D-.
2. If D3 1s successful then so are D1 and D,.

3. The length of Ds s the mazimum of the lengths of D1 and Ds. a

Now we are able to relate the ordinal powers of Tp to breadth-first derivations.
This result is the key for relating TS to finitely failed derivations, and corresponds
to Lloyd’s Proposition 13.5 ([17]).

www.manaraa.com

42

Lemma 5.7. o(A) € TS | i iff using a complete solver A has a breadth-first deriva-
tion which is compatible with o and which s successful with length < i or else
has length 1.

ProoF. The proof is by induction on ¢. The base case 1s when ¢ = 0. This holds
because o(A) € Tlg L 0 for all A and o, and every atom A has the breadth-first
derivation of length 0 consisting of the initial state (A | true) which is compatible
with every valuation.

We now prove the inductive step. The induction hypothesis is that o(A4) € Tg)
iff using a complete solver A has a breadth-first derivation which is compatible with
o and which is successful with length < 7 or else has length 7. We will prove that
o(A) € TS | i+ 1iff using a complete solver A has a breadth-first derivation which
1s compatible with ¢ and which is successful with length < ¢ or else has length 74 1.

Consider o(A) € TS | i+ 1. Assume A is of form p(5). From the definition of
ordinal powers and the immediate consequence function, for some rule

p(ﬂ := Ly,..., L,
in P and valuation ¢’ we have that o(A) = o/(p(f)) and that
De, TS il L1 A A Ly,
We can assume that the variables in the rule are disjoint from the variables in A.
We first prove that each L; has a breadth-first derivation compatible with o'. If

L; is a primitive constraint, D¢ |Eo Lj. Thus L; has the successful breadth-first
derivation

<Lj |true> = BF <E| | Lj>

which is compatible with ¢/ and of length 1. If L; is an atom, then ¢/(L;) € TS | i.

From the induction hypothesis L; has a breadth-first derivation which is compatible

with ¢’ and which is successful with length < 7 or else has length 7. Thus from

Lemma 5.5, the state (L1,..., Ly | true) has a breadth-first derivation which is

compatible with ¢’ and which is successful with length < 7 or else has length .
Let o' be the valuation defined by

i o(x) when x € vars(A

o'(z) = {0”((1?) otherwise. W
It follows that (§ = &Ly, ..., Ly | true) has a breadth-first derivation which is
compatible with ¢’ and which is successful with length < ¢ or else has length 1.
Thus (A | true) has a breadth-first derivation which is compatible with ¢” and
which is successful with length < i + 1 or else has length ¢ + 1. As ¢” and o are
identical over the variables in A, this derivation is also compatible with o. Thus
we have proved one direction of the required statement. The other direction is

simple reversal of the above argument except that we use Lemma 5.6 instead of
Lemma 5.5. O

Theorem 5.8. (Algebraic Completeness of Finite Failure)
Let P be a canonical CLP(C) program, and let G be a ground goal. If

P* D¢ =- 3G
then G finitely fails for any fair selection rule, provided a complete solver is used.

PrOOF. We prove the contrapositive. We first prove it for the case G is an

www.manaraa.com

43

atom. Assume that GG does not finitely fail. Then G has a successful derivation or
an infinite fair derivation. Then G has a successful breadth-first derivation or an
infinite breadth-first derivation, Dgp say. As GG is ground, Dpp i1s compatible with
any valuation, say . From Lemma 5.7, it follows that for all i, o(G) € Tlg 4 ¢ and
so o(G) € TS | w. As P is canonical, o(G) € gfp(TS), and so o(G) € gm(P*,C).
Thus,
P* D¢ =- 3G

does not hold. The case when G is a conjunction of literals follows a similar argu-
ment but uses Lemma 5.6. 0O

The restriction to canonical programs is not too severe, as almost all programs in
practice are canonical. Notice that the completeness result provided by Theorem 5.7
was stronger in the sense that it did not require programs to be canonical or the
goal to be ground.

Finally we consider the relationship of the logical and algebraic semantics to the
“finite failure set” which is the analogue of the success set.

Definition 5.6. The finite failure set of a program P, F Fp, is the set of facts
{A = ¢| (Alc) finitely fails for P via some selection rule}.

The relationship to the logical semantics is a straightforward corollary of Theo-
rem 5.7.

Corollary 5.3. Let P be a CLP(C) program, let A be an atom, and ¢ a constraint.
Then A := ce FFp iff P*,Tc E—-3(AAc). O

We now examine the relationship of the finite failure set with the algebraic
semantics.

Theorem 5.9. Let P be a CLP(C) program. Then
[FFple C C-basep \ TS | w.

ProoF. The proof is by contradiction. Assume that o(A4) € Tlg J w and that
o(A) € [FFplc. Now ¢(A) € TS | w, implies that for all i, o(4) € TS | i. From
Lemma 5.7, either A has a successful breadth-first derivation which is compatible
with o or else A has breadth-first derivations of unbounded length which are com-
patible with o. Thus, from Koenig’s Lemma A either has a successful or an infinite
breadth-first derivation which is compatible with ¢. Now consider any ¢ such that
C o ¢. Then from Lemma 5.4, (A | ¢) has a successful or an infinite breadth-first
derivation which is compatible with ¢. Thus (A | ¢) cannot finitely fail for any
literal selection strategy. Thus o(A) € [FFple. O

Unfortunately the reverse inclusion does not hold in general. The most obvious
reason 1s that the solver may not be complete, and so it will “incorrectly” not
terminate a failing derivation. However, even if the solver is complete, there may
still be an expressiveness problem. The problem is that the constraint domain may
not allow the constraints in the fact to “cover” some of the elements.

Example 5.6. Let Real* be the constraint domain with linear arithmetic equali-
ties and the unary constraint # 7 as the only primitive constraints and the usual

www.manaraa.com

44

functions and constants. Now consider the program
p(X) = X #m.

Here C-basep \ TS | w = {p(n)}, but there is no constraint ¢ and atom A with
predicate symbol p such that the state (Al ¢) finitely fails for this program.

To overcome this problem we require a technical restriction on the constraint
domain.

Definition 5.7. The constraint domain C is solution compact if for all constraints
¢, there is a possibly infinite set of constraints C' such that

De V(e \/O).

All constraint domains occurring in practice are solution compact. Of course
Real* from Example 5.6 is not, but clearly that domain was a contrived and patho-
logical case. The original definitions of solution compactness [7, 8] included a further
condition that was later shown to be unnecessary [18].

Theorem 5.10. Let P be a CLP(C) program. If C is solution compact and solvc is
a complete solver then

[FFple = C-basep \ TS | w.
Proo¥. From Theorem 5.9,
[FFple C C-basep \ T% | w.

We now prove the reverse inclusion. Let o(A) € C-basep \ TS | w. Thus for
some i, 0(A) & Tlg 4 1. Let Dy, ..., D, be the successful breadth-first derivations
from A of length less than ¢ and the breadth-first derivations from A of length
. From Lemma 5.7, no D; will be compatible with ¢. For each Dj, let ¢; be
the constraint in the last state. It follows that for each ¢;, o is not a solution
of yars(aycj. As the constraint domain is solution compact, there is a constraint
C;' such that C;' A Fyars(aycj is unsatisfiable but o is a solution of c}. Let ¢ be
/\;L:1 c. By construction o is a solution of c. It follows that (A I c) cannot have a
successful breadth-first derivation or infinite breadth-first derivation, as otherwise
from Lemma 5.4, A would have a successful breadth-first derivation or infinite
breadth-first derivation compatible with ¢. Thus (A I ¢) finitely fails for any fair
literal selection rule and so o(A) € [FFplc. O

By combining the above theorem with the definition of canonical program and

Theorem 5.1, we have the following result.

Theorem 5.11. Let C be a solution compact constraint domain and P be a canon-
ical CLP(C) program. If P is evaluated with a complete solver then [F Fplec =
C-basep \ gm(P*,C). O

One should not read too much into Theorem 5.11. It does not guarantee that
an atom (or goal) will finitely fail if the atom does not hold in any C-model of the
completion, even if the conditions of solution compactness, canonicity and solver

www.manaraa.com

45

completeness are met.

Ezxample 5.7. Let P be the CLP(Term) program
p(f(X)) = p(X).

P*is VY (p(Y) < 3X(Y = f(X)Ap(X))). The program is canonical with 7S | w =
gfp(TS) = 0. Thus the program completion has the single T'erm-model §. Thus
= 3Xp(X) holds in all Term-models of P*. However, even with a complete solver
the goal p(X) will not finitely fail.

6. CONCLUSION

Constraint logic programs are a generalization of logic programs which are param-
eterized by the choice of the underling constraint domain. Constraints from the
constraint domain can be understood in three complementary ways: operationally
by means of a (possibly incomplete) constraint solver; logically by way of the con-
straint theory; and algebraically, by means of the domain of computation which
is the constraint’s intended interpretation. These three views are required to be
coherent, that is, the domain of computation must model the constraint theory,
while the constraint theory must agree with the constraint solver.

We have lifted these three semantics from the constraint domain to give op-
erational, logical and algebraic semantics for constraint logic programs. As for
the constraint domain, the semantics form a hierarchy: the operational seman-
tics is the least strong, then the logical semantics, while the algebraic semantics is
the strongest semantics. To prove correctness of the semantics we have employed
breadth-first derivations and two fixpoint semantics so as to bridge the gap between
the algebraic and the operational semantics.

In the case of a successful query each of the semantics agree on what is suc-
cessful, although, if the solver is incomplete, the operational semantics may have
successful derivations which are not satisfiable, producing pseudo-answers that do
not correspond to a true success.

Accord between the three semantics for goals which finitely fail is somewhat more
difficult to obtain and requires the constraint solver to be more powerful. For the
operational semantics to agree with the logical semantics the solver must be theory-
complete, and for the operational semantics to agree with the algebraic semantics
we need the solver to be complete and a number of other technical conditions to be
satisfied.

The diagram shown in Figure 6.1 summaries the relationships between the opera-
tional, algebraic and fixpoint semantics in the case. Each semantics is characterized
by a subset of C-basep. The diagram shows the containment relationships between
these sets and below the diagram gives conditions which imply where containment
1s actually equality.

It is instructive to relate our results back to the semantic framework developed
for logic programs. Pure logic programs can be viewed as an instance of the CLP
Scheme based on the Term constraint domain in which constraints are equations
over terms. In the Term constraint domain unification is the constraint solving

www.manaraa.com

46

m(P,C) = Ifp(T}) = [SSple

C is solution compact, solve is complete P is canonical

FIGURE 6.1. Relationship between subsets of C-basep

mechanism, the Herbrand universe 1s the computation domain and the axioms for
free equality [2] form the constraint theory. Since the constraint solver is complete,
the computation domain is solution compact and independence of constraints holds,
we can use our generic results for CLP to immediately obtain the standard semantic
theory of logic programs. Thus the semantic theory for CLP strictly generalizes
that for logic programs, yet in many cases the statement of results is simpler and
proofs are more direct than those standard for logic programming, largely because
the vagaries of unification, substitutions and local variables can be factored out.

We thank Jean-Louis Lassez for his comments and discussions, over the years, on
the topic of this paper This work was supported by Australian Research Council grants
A49702580 and A49700519.

REFERENCES
1. K.R. Apt and M. H. van Emden. Contributions to the theory of logic programming.
Journal of the ACM, 29(3):841-862, 1982.

2. K. L. Clark. Negation as failure. In Logic and Databases (H. Gallaire and J. Minker
Eds.). Plenum Press, New York, 293-322, 1978.

3. A. Colmerauer. Prolog-11 Manuel de Reference at Modele Theorique. Groupe In-
telligence Artificelle, Universite d’Aix-Marseille 11, 1982.

4. M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a
programming language. Journal of the ACM, 23(4):733-742, 1976.

www.manaraa.com

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

47

M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative modeling of the
operational behavior of logic languages. Theoretical Computer Science 69(3):289-
318, 1989.

M. Gabbrielli and G. Levi, Modeling answer constraints in constraint logic pro-
grams, Proc. 8th International Conference on Logic Programming, 238-252, 1991.

J. Jaffar and J-L. Lassez, Constraint logic programming, Technical Report 86/73,
Department of Computer Science, Monash University, 1986.

J. Jaffar and J.-L.. Lassez. Constraint logic programming. In Proc. Fourteenth Ann.
ACM Symp. Principles of Programming Languages, pages 111-119, 1987.

J. Jaffar, J.-L. Lassez and J.W. Lloyd. Completeness of the Negation as Failure
Rule. Proc. IJCAI-83, 500-506, 1983.

J. Jaffar, J.-L.. Lassez and M.J. Maher. A theory of complete logic programs with
equality. The Journal of Logic Programming 3:211-223, 1984.

J. Jaffar and M. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19&20, 503-581, 1994.

J. Jaffar, 8. Michaylov, P. Stuckey & R. Yap, The CLP(R) language and system,
ACM Transactions on Programming Languages, 14(3), 339-395, 1992.

J. Jaffar and P. Stuckey, Semantics of infinite tree logic programming. Theoretical
Computer Science 46:141-158, 1986.

J. Jaffar and P. Stuckey, Canonical logic programs, Journal of Logic Programming
3, 143-155, 1986.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics, 5, 285-309, 1955.

J-L. Lassez and M.J. Maher, Closures and Fairness in the Semantics of Program-
ming Logic, Theoretical Computer Science 29 (1984) 167-184.

J.W. Lloyd, Foundations of Logic Programming, Springer-Verlag, Second Edition,
1987.

M. Maher. Logic semantics for a class of committed-choice programs. In Proc.
Fourth Int. Conf. on Logic Programming, pages 858-876, The MIT Press, 1987.

A. Mal’cev, Axiomatizable Classes of Locally Free Algebras of Various Types, in:
The Metamathematics of Algebraic Systems: Collected Papers, 19361967, Chapter
23, 262-281, 1971.

K. Marriott and P. Stuckey. Programming with Constraints: An Introduction, MIT
Press, 1998.

E. Mendelson. Introduction to Mathematical Logic, Wadsworth and Brooks, Third
Edition, 1987.

J.R. Shoenfield, Mathematical Logic, Addison-Wesley, 1967.

M. Wallace, A computable semantics for general logic programs, Journal of Logic
Programming 6, 269-297, 1989.

D.A. Wolfram, M.J. Maher and J.-L. Lassez. A unified treatment of resolution
strategies for logic programs. Proc. Second Int. Conf. on Logic Programming, Up-
psala, 263-276, 1984.

www.manaraa.com

